5.8 Volume

Volume: The amount of space that an object occupies, measured in cubic units.

How many Pyramids fit into a prism with the same base and height?

DEMO- beads for volume

https://www.youtube.com/watch?v=OUDjY6vJ8pw

Summary:
The volume of a Cube with the same base and height is $3 x$ the volume of a pyramid.

The volume of a pyramid with the same base and height is $1 / 3$ the volume of a cube.

NOTE: As long as the base and the height is the same this holds true.

Ex. 1 Find the volume of the pyramid with the same base and height as the following object.

$$
\begin{aligned}
V_{P Y R} & =\frac{A_{\text {BASE }} \times h}{3} \\
& =\frac{6.6 \cdot 10}{3} \\
& =\frac{360}{3} \\
& =120 \mathrm{~cm}^{3}
\end{aligned}
$$

Ex. 2 Calculate volume of this solid.
Ex. 3 Find the volume of the prism with the same base and height as the

$$
\begin{aligned}
A_{\text {rea }} & =A_{\text {RECT }}+A_{\text {TR }} \\
& =20(12)+\frac{20(12)}{2} \\
& =360 \mathrm{~cm}^{2}
\end{aligned}
$$ pyramid below.

$$
\begin{aligned}
& h^{2}+3^{2}=5^{2} \\
& h^{2}+9=25 \\
& h^{2}=25-9 \\
& h^{2}=16 \\
& h=\sqrt{16} \\
& h^{2}=42
\end{aligned}
$$

Volume

$$
\begin{aligned}
V & =A_{\text {BASE }} \cdot \text { Height } \\
& =360 \cdot 15 \\
& =5400 \mathrm{~cm}^{3}
\end{aligned}
$$

Can you guess how many cones with the same base and height fit into a cylinder?
https://www.youtube.com/watch?v=0ZACAU4SGyM

Summary:
The volume of a cylinder with the same base and height is $3 x$ the volume of a cone.

The volume of a cone with the same base and height is $1 / 3$ the volume of a cylinder.

Ex. 4 Calculate the capacity of the soup can.

$$
\begin{array}{rlrl}
A_{\text {BASE }} & =\pi r^{2} & & \text { Volume } \\
& =\pi(3)^{2} & V & =A_{B A S E} \cdot h \\
& =3.14(9) & & =28.3(8) \\
& =28.3 \mathrm{~cm}^{2} & & =84.9 \mathrm{~cm}^{3}
\end{array}
$$

Empobla

Ex. 5 a) Calculate the volume of the cone to the nearest cm^{2}.

$$
\begin{aligned}
h^{2}+4^{2} & =12^{2} \\
h^{2}+16 & =144 \\
h^{2} & =144-16 \\
& =128 \\
h & =\sqrt{128} \\
& =11.3 \mathrm{~cm}
\end{aligned}
$$

$$
V=\frac{1}{3} \pi r^{2} h
$$

$$
=\frac{1}{3} \pi(4)^{2}(11.3)
$$

$$
=189.3 \mathrm{~cm}^{3}
$$

$\left\{\begin{array}{l}V=\pi r^{2} h \\ =3 \mathrm{~cm} \\ =\pi(3)^{2}(8)\end{array}\right.$

$$
2
$$

b) What is the volume of a cylinder with the same base and height?

$$
\begin{aligned}
& \text { Since cone is } \frac{1}{3} \text { volume of a similar cylinder } \\
& \begin{aligned}
& V=189.3 \times 3 \\
&=568 \mathrm{~cm}^{3}
\end{aligned}
\end{aligned}
$$

Ex 6 Determine the volume of a cone that just fits inside this cylinder

$$
\begin{array}{rlrl}
V & =\frac{1}{3} \pi r^{2} h & V & =\frac{1}{3} \pi(2.15)^{2}(5.7) \\
h & =5.7 & & =27.6 \mathrm{~cm}^{3} \\
r & =\frac{4.3}{2} & & \\
& =2.15 & &
\end{array}
$$

Ex. 7 A cylinder has a volume of $263.9 \mathrm{~cm}^{3}$ and a base radius of 6 cm . What is the cylinder's height?

$$
\begin{aligned}
& V=\pi r^{2} h \\
& 263.9=\pi(6)^{2} h \\
& 263.9=\pi(36) h \\
& 263.9=113.09 \mathrm{~h} \\
& \frac{263.9}{113.09}=h \\
& 2.3=h \\
& \text { The cylinder has a } \\
& \text { hight of } 2.3 \mathrm{~cm}
\end{aligned}
$$

