STATION A

1. Determine if the relations below are linear or non-linear. Justify your answer.

a)
$$y = 3x - 1$$

linear. In the form $y = mx + b$

b) $y = 2^x$ Non-linear. Variable as an exponent c) $y = \frac{1}{x} + 4$ Non-linear. Variable in the denominator.

d)

Non-linear. Not a line.

Linear. Straight line.

Not a line.

2. Determine if the following tables of values represent linear relations. Show your thinking/justification!

a)	x	у	15+ diff
(-2	17	4
+2 Sy	0	21	 4
+26	2	25	4
+2 (4	29	'
+2(3	6	33	4
		_	

linear. 1st differences are constant.

b)	x	у	1st diff
+1 (-5	50	- 1
	-4	49	-2
+ ((,	-3	47	-3
+1 5	-2	44	-4
+15	-1	40	

Non-linear. 1st diff. is not constant.

<u>∧</u> ,c)	х	у	Δy	ROC
+3	0	1	+ 6	<u>b</u> = 2
+3	3	7	1 2	$\frac{2}{1} = 2$
,	4	9	+ 2	4 = 2
+ 2	6	13	7 7	2
+1	7	15	7 2	$\frac{2}{1} = 2$
+2+1	4 6 7		+ 4 + 2	2

linear. The slope (RoC) is the same throughout the table.

3. Determine the equations of the table in questions 2a and 2c.

a)
$$m = \frac{ay}{ax}$$
 $b = 21$

$$= \frac{4}{2}$$
 $\therefore y = 2x + 21$

$$= 2$$

c)
$$M = 2$$
 $b = 1$
 $y = 2x + 1$

STATION B

1. Determine the slope of the following lines (find the equations of both lines for c).

$$m = \frac{rtse}{ron}$$

$$= \frac{-t}{3}$$

$$= -4$$

2. Determine the equations of each of the lines in question 2.

a)
$$y = -4x + 7$$

b)
$$y = -\frac{1}{2} \times +2$$

a)
$$y = -4x + 7$$
 b) $y = -\frac{1}{2}x + 2$ c) horizontal: $y = 5$ vertical: $x = -3$

- 3. Determine the slope of the line that passes through the following pairs of points.
- a) (-3,7) and (2,17)

$$\int ... M = \frac{-4}{7}$$

STATION C

1. Sketch a line that has a slope of $\frac{4}{7}$ and goes through the point (1, -3).

$$M = \frac{4}{7}$$

$$= \frac{-4}{-7}$$

2. A line segment \overline{AB} starts at the point A(3,4). If the slope is $-\frac{2}{3}$, what is a possible coordinate for the point B?

Many answers possible.
$$Ex: (6,2)$$

@ Any point that satisfies the equation
$$y = \frac{-2}{3} \times +6$$

3. An accessibility ramp needs to have a slope of at most $\frac{1}{10}$ to pass inspection in Ontario. A store is planning to install a new ramp that goes up 0.5 meters in height over a distance of 4.6 meters. Would this ramp pass inspection?

$$m = \frac{rise}{ron}$$

$$= \frac{0.5}{4.6}$$

$$= 0.1087$$

$$4 \frac{10}{10} = 0.1$$

STATION D

1. Organize the following lines from least steep, to most steep.

$$y = -5x + 1$$

$$y = x + 5$$
,

$$y = -5x + 1$$
, $y = x + 5$, $y = -3x - 2$, $y = -\frac{3}{5}x$, $y = 4x - 5$

$$y=-\frac{3}{5}x,$$

$$y=4x-5$$

$$y = -\frac{3}{5}x$$
, $y = x + 5$, $y = -3x - 2$, $y = 4x - 5$, $y = -5x + 1$

2. Describe how each of the following lines has been transformed compared to the parent function y = x.

a)
$$y = x + 5$$

b)
$$y = x - 2$$

Translated up 5 units.

3. For each of the following lines, write an equation of a line that is parallel.

a)
$$y = 2x - 5$$

b)
$$y = \frac{3}{7}x$$

c)
$$y = -9x - 1$$

$$y = \frac{3}{7}x + 5$$

$$y = -9x$$

* Mony answers possible. Can have different y-Intercept.

4. For each of the following lines, write an equation of a line that is perpendicular.

a)
$$y = 5x - 1$$

b)
$$y = -\frac{1}{7}x$$

c)
$$y = \frac{2}{3}x + 2$$

$$y = -\frac{1}{5}x + 2$$

$$y = 7x - 5$$

$$y = -\frac{3}{2}x + 1$$

* Many answers possible. Can have different y-Intercept.

STATION E

1. For the following lines, identify the slope, the y-intercept and use these to graph the line.
a) y = 2x + 5Slope: 2y-intercept: 5b) $y = -\frac{3}{2}x$ Slope: $-\frac{3}{2}$ y-intercept: 0c) 5x + 7y + 14 = 0Slope: $-\frac{5}{7}$ y-intercept: 0 $\frac{7y}{7} = -\frac{5x}{7} + \frac{14}{7}$ $y = -\frac{5}{7}x - 2$

a)
$$y = 2x + 5$$

b)
$$y = -\frac{3}{2}x^{3}$$

c)
$$5x + 7y + 14 = 0$$

d)
$$y = 6$$

e)
$$x = -2$$

e) x = -2 Slope: <u>undefined</u> y-intercept: <u>none</u>

STATION F

- 1. Determine the equation of the line that has the following properties:
- a) Has a slope of -3 and a y-intercept of 2.

$$y = -3x + 2$$

c) Has a slope of 6 and passes through the point (-3, -8).

$$y = 6x + b$$

$$5ub(-3, -8)$$

$$-8 = 6(-3) + b$$

$$-8 = -18 + b$$

$$+18 + 18$$

$$10 = b$$

$$y = 6x + 10$$

b) Is horizontal and goes through the point (1,4).

$$y = b$$

 $50b(1,4)$
 $4 = b$

d) Is vertical and goes through the point (8, -2).

$$\chi = 0$$

$$\sin(8^{-2})$$

$$8 = 0$$

$$^{\circ}$$
. $\chi = 8$

- 2. Determine the equations of the line that passes through the following points.
- a) (3, 13) and (5, 25)

$$\frac{A \times \times \sqrt{y}}{4245} = \frac{Ay}{13} + 12 = \frac{Ay}{14} =$$

b)
$$(7, -3)$$
 and $(14, -11)$

$$y = \frac{-8}{2}x + 5$$

STATION G

- 1. Determine the equation of a line that satisfies the following properties:
- a) Is parallel to the line y = 2x 5 and crosses through the point (4, -2)

$$m = 1$$
 $y = 2x + b$
 $sub(4, -2)$
 $-2 = 3(4) + b$
 $-2 = 8 + b$
 $-10 = b$
 $y = 2x - 10$

b) Is perpendicular to the line $y = \frac{3}{2}x - 4$ and crosses through the origin.

$$M = -\frac{2}{3}$$

$$b = 0$$

$$y = -\frac{2}{3} \times$$

- 2. Hikaru paid a gym \$29 in December when they only went 6 times. In January they made a New Years resolution to go more often and had to pay \$77 for attending 18 times.
- a) Determine an equation that represents this situation. Define your variables!

b) What might the slope and y-intercept represent in this situation?

- c) How much would it cost if Hikaru went to the gym 30 times in one month?
 - n = 30

C = 57

$$C = 4(30) + 5$$

$$= 120 + 5$$

$$= 125$$

$$\therefore \text{ He would cost $125.}$$

$$57 = 4n + 5$$

 $52 = 4n$
 4 . Hikaru
 $13 = n$ went 13
times.

STATION H

- 1. Determine the equation of a line that satisfies the following properties:
- a) Is parallel to the line 5x 3y + 2 = 0 and has the same y-intercept as 7x = 2y + 8

$$5x - 3y + 2 = 0$$

$$+3y + 2 = 3y$$

$$5x + 2 = 3y$$

1)
$$7x = 2y + 8$$
 2 Set $x = 0$
 $7x - 8 = 2y$ 7(0) = 2y + 8
 $7x - 4 = 9$ 0 = 2y + 8
 $7x - 4 = 9$ -8 = 29
 $7x - 4 = 9$

$$y = \frac{5}{3}x - 4$$

b) Has the same y-intercept as the line that crosses through the points (7,1) and (2,-4) and is perpendicular to the line 2x - 5y - 3 = 0.

- 2. Graph the region that represents the following inequalities. Show your work!

b)
$$y \ge -\frac{2}{3}x + 1$$

