5.4 Angles in Polygons

How can we find the sum of the angles in a quadrilateral? Can you think of a way without using a protractor?

Ex. 1 Find the unknowns

$$
\begin{aligned}
a & =180^{\circ}-80^{\circ} \quad(S A T) \\
& =100^{\circ}
\end{aligned}
$$

$=100^{\circ}$

$$
\begin{aligned}
y & =180^{\circ}-50^{\circ}-100^{\circ} \\
& =30^{\circ}
\end{aligned}
$$

What is the sum of the interior angles of a polygon?
What is the sum of the exterior angles of a polygon?

Use the same strategy to complete the table below.
(diagrams are on next page)

Number of Sides	Polygon Name	Sum of Interior Angles	Sum of Exterior Angles
3	Triangle	+180, 180°	360°
4	Quadrilateral	$180 \sim 360^{\circ}$	360°
5	Pentagon	5540°	360°
6	Hexagon	$\stackrel{720^{\circ}}{ }$	360°
7	Heptagon	-900	360°
8	octagon	c 1080°	360°

The sum of the exterior angles of a convex polygon is: \qquad

Look for a pattern in the sum of the interior angles column. Determine a formula for the sum of the interior angles of a polygon based on the number of sides.

The sum of the interior angles of a polygon with n sides is: $(n-2) \times 180^{\circ}$

$$
\begin{aligned}
& 5 \times 180^{\circ} \\
& =900^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& 6 \times 180^{\circ} \\
& <1080^{\circ}
\end{aligned}
$$

Regular polygon: polygon with equal sides and equal interior angles.

Ex. 2 Determine the measure of each exterior angle in a regular 11-sided polygon.

Ex. 3 Determine the measure of each interior angle in a regular 15 -sided polygon.

Ex. 4 Determine the value of x.

$$
\begin{aligned}
& \begin{aligned}
& \text { Sum }=(n-2) 180^{\circ} \\
& \begin{aligned}
& n=6 \\
& \text { sum }=(6-2) 180^{\circ} \\
&=4\left(180^{\circ}\right) \\
&=720^{\circ}
\end{aligned}
\end{aligned} \text { (} \begin{aligned}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& x+x+20+x-15+x+6+x-10+x+5=720^{\circ} \\
& 6 x+6=720 \\
& 6 x=720-6 \\
& \frac{6 x}{6}=\frac{714}{6} \\
& x=\frac{714}{6} \\
&=1190
\end{aligned}
$$

Ex. 5 The interior angles of a regular polygon add to 1440°.
How many sides does the polygon have?

$$
\frac{1440}{180}=n-2
$$

Ex. 6 How many sides does a polygon have if each of its interior angles measures 162?

Ex 7. In a regular polygon, the ratio of the measure of the exterior angle to the measure of the adjacent interior angle is 1 to 4 . How many sides does the polygon have?

Summary Sum of Interior Angles

Where n is the number of sides of a polygon \longrightarrow

Sum of Exterior Angles

Sum of all exterior angles of any polygon is

