5.4 Angles in Polygons

How can we find the sum of the angles in a quadrilateral? Can you think of a way without using a protractor?

What is the sum of the interior angles of a polygon? What is the sum of the exterior angles of a polygon?

Use the same strategy to complete the table below.

(diagrams are on next page)

Number of Sides	Polygon Name	Sum of Interior Angles	Sum of Exterior Angles
3	Triangle	+180 / 800	3600
4	Quadrilateral	+180 × 360°	360°
5	Pentagon	\$540	360°
6	Hexagon	>720	360'
7	Heptagon	\$ 900°	3600
8	Octagon	5 1080°	360°
		$(N-2) \times 180^{\circ}$	

The sum of the exterior angles of a convex polygon is: <u>360</u>°

Look for a pattern in the sum of the interior angles column. Determine a formula for the sum of the interior angles of a polygon based on the number of sides.

The sum of the interior angles of a polygon with *n* sides is: $(n-2) \times 1 \le 0^{\circ}$

5 × /80' = 900°

 $< 1080_{\circ}$ $< 180_{\circ}$ Regular polygon: polygon with equal sides and equal interior angles.

Ex. 2 Determine the measure of each exterior angle in a regular 11-sided polygon.

Ex. 3 Determine the measure of each interior angle in a regular 15-sided polygon.

Ex. 4 Determine the value of *x*.

Ex. 5 The interior angles of a regular polygon add to 1440°.

How many sides does the polygon have?

$$\frac{|440|}{|80|} = (n-2) |80| = n-2$$

$$\frac{|440|}{|80|} = n-2$$

$$\frac{|440|}{|80|} = n-2$$

ſ		63
	J	
	Ξ	
-		
		•

Ex. 6 How many sides does a polygon have if each of its interior angles measures 162°?

Ex 7. In a regular polygon, the ratio of the measure of the exterior angle to the measure of the adjacent interior angle is 1 to 4. How many sides does the polygon have?

Summary Sum of Interior Angles

Where n is the number of sides of a polygon \longrightarrow

Sum of Exterior Angles

Sum of all exterior angles of any polygon is