4.9 Investigating Lines in Other Forms

Part A: $\mathrm{x}+\mathrm{y}=\mathrm{k}$

Ex. 1 Generate points for each equation, then graph the line.
a) $x+y=6$

1	1
4	2
2	4
6	0
1	5
-3	9
-4	10

$$
x-i n t=6 y-i n t=6
$$

b) $x+y=-5$

$$
x \text {-int }=-5 \quad y \text {-int }=-5
$$

Part B: $x-y=k$

Ex. 2 Generate points for each equation, then graph the line.
a) $x-y=3$

1	1
6	3
9	6
0	-3
3	0

b) $x-y=-4$ $x-0=-4$

1	1
0	4
-4	0

**include negative values too

Summary:

- $x+y=k$ represents a linear relation with $x=i n t=\underline{K}$ and y-int $=K$
- $\mathrm{x}-\mathrm{y}=\mathrm{k}$ represents a linear relation with $\mathrm{x}=\mathrm{int}=\perp<$ and y -int $=-K$

Part C: $x=k$ and $y=k$
Ex. 3 Generate points for each equation, then graph the line.
a) $x=5$
b) $x=-8$

slope undefined
x-int. \qquad
y-int. None

slope undefined
x-int. - 8
y-int. None
c) $y=2$

d) $y=-6$

slope \bigcirc
x-int. None
y-int.

slope \qquad
x-int. None
y-int. \qquad

Part D: $\quad x y=k$

Ex. 4 Generate points for each equation, then graph the line.
a) $x y=12$

1	1
1	12
12	1
2	6
6	2
3	4
4	3

b) $x y=-4$

1	1
-1	4
1	-4
-4	1
4	-1
-2	2
2	-2

Summary:

- $x y=k$ represents a non-linear relation
- when k is positive the relation is in quadrant $1 \&$ quadrant 3
when k is negative the relation is in quadrant 2 \& quadrant 4
- x and y can never equal 0 , this creates an imaginary boundary called an asymptote
- the relation gets closer and closer to the asymptote but never reaches it

