4.4 Investigating $y=a x$

The equation $y=x$ describes a set of points on the coordinate plane that follow the "rule" that the x-coordinate is equal to the y coordinate.

- Write down a list of points that satisfy the condition that $y=x$ in the table. How many points are there?
- Graph the points in your table. What would the graph look like if you could graph ALL of the points that have $y=x$?

What is the slope of this line?

- The graph of $\mathrm{y}=\mathrm{x}$ is the called the "base" or "parent" function for all lines.
- All other lines are transformations of this line.

Ex. 1 Generate points for each equation, then graph the line. Determine the slope of each line.
a) $y=2 x$
b) $y=3 x$

d) $y=\frac{1}{4} x$

c) $y=\frac{1}{2} x$

slope= \qquad

1	1
-8	-2
-4	-1
0	0
4	1
8	2
12	3

slope= \qquad
\therefore The larger the slope, the steeper the line

Ex. 2 Generate points for each equation, then graph the line. Determine the slope of each line.
a)

b) $y=-3 x$

slope $=-2$
c) $y=-\frac{1}{2} x$
d)

The closer the slope is to eric, the flatter the line

slope $=\underline{-\frac{1}{2}}$
slope $=-\frac{1}{4}$

\qquad

Summary : y = ax

- represents the equation of line that goes through $(0,0)$ and has a slope of "a"

If $a>1$, then the line is steeper than $y=x$.

$$
y=5 x
$$

If $0<a<1$, then the line is less steep than $y=x$.

$$
y=\frac{1}{4} x
$$

If $-1<a<0$, then the line is less steep than $y=x$, and is sloped in a negative direction.

$$
y=\frac{-1}{2} x
$$

If $a<-1$, then the line is steeper than $y=x$, and is sloped in a negative direction.

$$
y=-3 x
$$

Ex. 3 Generate points for each equation, then graph the line. Determine the y-intercept for each line.
a) $y=x+3$

1	1
-2	1
-1	2
0	3
1	4
2	5

y-int= \qquad
b) $y=x+1$

1	1
-2	-1
-1	0
0	1
1	2
2	3

y-int= \qquad
c) $y=x-2$

1	1
-2	-4
-1	-3
0	-2
1	-1
2	0

y-int $=-2$

Summary: $y=x+b$

- represents the equation of a line with slope=1 and a y-intercept=b.
- if $b>0$, the line is translated up b units
- if $b<0$, the line is translated down b units

Ex. 4 Look at the graphs and equations of each pair of lines. What do you notice about the graphs? the slopes?

slope $1 _2$ slope $2 \ldots$

slope 1 \qquad slope 2 \qquad

slope 1 \qquad slope 2 \qquad

slope 1 \qquad slope 2 \qquad

Parallel lines have slopes that are equal.

Ex. 5 Look at the graphs and equations of each pair of lines. What do you notice about the graphs? the slopes?

All perpendicular!

slope $1-\frac{3}{2}$ slope 2 \qquad

slope $1 \frac{-5}{4}$ slope 2 \qquad $\frac{4}{5}$

slope 1 \qquad

Conclusion:
Perpendicular lines have slopes that are negative reciprocals.

- Flip the fraction
- Change the sign

Ex. 6 Order the equations of these lines from least steep to steepest.
a)

$$
\begin{aligned}
& y=\frac{1}{7} x+4 \\
& y=3 x-4 \\
& \text { (1) } \\
& \text { 3 }
\end{aligned}
$$

b)

$$
\begin{aligned}
& y=\left(\frac{-1}{2}\right)^{(2)} x+5 \\
& y=(-3 x+4 \\
& \text { (4) } \\
& y=(2 x-3)
\end{aligned}
$$

Ex. 7 Match the lines that are parallel to each other.

Ex. 8 Match the lines that are perpendicular to each other.

