4.2 Linear versus Non-Linear

How can you tell the difference between linear and non-linear?
। First Difference

- linear: first differences are constant (for constant Δx)
- non-linear: first differences are not constant

II
Graphically

III Equations Now look at the above equations

All linear equations can be written in the form

$$
y=m x+b(\text { or } y=b \text { or } x=a) .
$$

Ex. 1 Linear or Non-linear?
a) $y=-4 x-2$
b) $y=2 x^{2}+1$
Linear
Non-linear
c) $\begin{gathered}2 x-3 y+4=0 \\ \text { Linear }\end{gathered}$

Notice that a linear equation can be written in different ways....

Ex. 2 Linear or Non-linear ? Eind the equation inc)

$m=\frac{9}{3}$
It IS linear! $=3$
$y=3 x+6$
d)

Non-linear

Ex. 3
At a square table, 4 people can be seated on each side. When two tables are joined together, as seen below, 6 people can be seated.

a) Complete the table of values
b) Does this show linear growth?

$$
\text { Yes! Constant } \frac{\Delta y}{\Delta x}
$$

c) If 12 tables were joined how many people could be seated? Use an equation.

$$
\begin{aligned}
& \quad S=2 n+2 \\
& \text { Sub } n=12 \\
& \hline S=2(12)+2 \\
&=24+2 \\
&=26
\end{aligned} \quad \begin{aligned}
& \text { There would be }
\end{aligned}
$$

$$
<\infty
$$

Ex. 4 After calculating first differences for the table of values on the right, Samantha concluded that the relationship bewteen length and width is nonlinear. Is Samantha correct? Explain.

$$
\begin{aligned}
\frac{\Delta y}{\Delta x} & =\frac{12.5-5.1}{3-1} \\
& =\frac{7.4}{2} \\
& =3.7
\end{aligned}
$$

\therefore It IS linear!
Sam is not correct.

