4.2 Linear versus Non-Linear

How can you tell the difference between linear and non-linear?

- First Difference
 - linear: first differences are constant (for constant Δx) +?
 - non-linear: first differences are not constant

II Graphically

| Equations Now look at the above equations

What about this equation?

⋾⋾

All linear equations have

- a degree of 1 (both the x and y variable have an exponent of 1)
- no variables in the denominator

ex:

 $y = 3x^{4} - 6 \quad \text{Non-line}$ $y = 3^{x} \quad \text{Non-line}$

y = 2x+7 Linear

All linear equations can be written in the form y = mx + b (or y = b or x = a).

Ex. 1 Linear or Non-linear?

Notice that a linear equation can be written in different ways....

Ex. 2 Linear or Non-linear ? Find the equation in c)

•••	THE EGG		
b) ,	70 5	10 5	
0)	Time (s)	Height (m)	
+5/	10	14	⁺²
\ +5/	15	16	4,5 5
45/	20	18	42 17
Ø	25	20)
	30	22	$M = \frac{5}{5}$
	H=:	St +10	•

c)	Х	У	
. /	, 0	6	$M = \frac{\Delta y}{\Delta x}$
+ 1 (1	9	13 = 3 243 = 3
+1 (2	12	A, > 1
→ \ (<u>)</u> + \ (3	15	+3 ->
+3 (4	18) + 9 ← ?
, 3 (7	27	
		m =	9
17 13	S linea	v. =	= 3
y = 3	1x +6		

	Day	Population	
	0	13	
5	1	14	
>	2	17	
ک ر	3	22	•
5	4	29	

Non-linear

d)

Ex. 3

At a square table, 4 people can be seated on each side. When two tables are joined together, as seen below, 6 people can be seated.

- a) Complete the table of values
- b) Does this show linear growth?

∨	< "	
	Number of Seats	
1	4	۲.
2	6) +
3	8	D + 2
4	10 .	+2
5	12	

c) If 12 tables were joined how many people could be seated? Use an equation.

:There would be 26 chairs.

Ex. 4 After calculating first differences for the table of values on the right, Samantha concluded that the relationship bewteen length and width is non-linear. Is Samantha correct? Explain.

 $\begin{array}{c|cccc}
L & W \\
\hline
1 & 5.1 \\
2 & 8.8 & +3.7 \\
3 & 12.5 & +3.7 \\
4 & 16.2 & +3.7 \\
5 & 19.9 & +3.7
\end{array}$

Order! $\frac{3}{3} \frac{12.5}{12.5}$ $\frac{2}{2} \frac{8.8}{8.5}$ $\frac{5}{19.9}$ $\frac{4}{16.2}$ $\frac{5}{3} \frac{12.5}{19.9}$ $\frac{7}{4} \frac{16.2}{16.2}$ $= \frac{7}{3} \frac{4}{2}$ $= \frac{7}{3} \frac{4}{2}$

: It Is linear! Sam is not correct.