PART A

1. A new motorcycle is priced at $\$ 5380$. After 9 years, its value has depreciated to $\$ 376$.
a) Express the value of the motorcycle as a linear function of the number of years since it was new.
b) Interpret the slope and y-intercept.
c) What was the value of the motorcycle 3 years after it was new?
2. Tarek bought a hockey card that has appreciated yearly. After 3 years it was worth $\$ 284$. After 7 years it was worth $\$ 596$.
a) Assuming the growth in value was linear, determine the original price of the hockey card and how much its value increases each year.
b) Write an equation to model the value of the card after t years.
c) Use the equation to determine the value of the card after 15 years.
3. A furniture store charges a fee on all items delivered from the store to the customer. The delivery fee y is computed by a linear equation $y=m x+b$, where x denotes the amount of the purchase. Find the equation the furniture store might use to compute the fee if the store charges $\$ 37.50$ to deliver a purchase of $\$ 525$ and charges $\$ 54.60$ to deliver an $\$ 810$ purchase.
4. Kamal bought a gym membership at a local gym. He has to pay a monthly membership fee, plus a set amount for each time he visits. If he goes 15 times in one month his total cost will be $\$ 310$. If he goes 24 times in one month his total cost will be $\$ 472$.
a) Determine the monthly fee and the cost per visit.
b) Write an equation to model the monthly cost based on the number of visits.
c) Use the equation to determine the cost if he visits the gym 35 times in one month.
d) If his monthly cost for December was $\$ 184$, use the equation to determine how many times
 he visited the gym.
5. A college has included its fixed room and board fees for first-year students into its total cost schedule. In a brochure, they list typical costs for tuition and room and board for a semester. The tuition cost for each credit is constant.
a) Determine the equation relating total cost and number of credits.

Credits	Total Cost
12	$\$ 4810$
15	$\$ 5350$
18	$\$ 5890$

b) Interpret the slope and y-intercept.

6. Halla's family is renting a cottage for a summer vacation. The price includes a fixed fee for the rental plus a daily amount per day. A 14 day rental costs $\$ 2850$. A 7 day rental costs $\$ 1625$. Create a mathematical model and use it to determine how much a 10 day rental would cost.

PART B

7. A fitness club offers two different types of monthly memberships. Membership A charges $\$ 4$ per visit. Membership B charges a flat fee of $\$ 12$ per month, plus $\$ 2$ per visit.
a) Write an equation to model the monthly cost of n visits for each Membership.
b) Use your equations to help you determine the conditions under which Membership A is a better choice (ie. cheaper), and the conditions under which Membership B is a better choice.
8. In Earth's atmosphere the speed of sound is approximately $331 \mathrm{~m} / \mathrm{s}$ at $0^{\circ} \mathrm{C}$ and approximately $343 \mathrm{~m} / \mathrm{s}$ at $20^{\circ} \mathrm{C}$. Clayton yells out "Hello" in a canyon when the air temperature is $-10^{\circ} \mathrm{C}$. If it takes 1.4 s to hear his echo, how far away is the wall of the canyon?

9. The faster a kangaroo hops, the longer the distance of the hop. Moving at less than $7 \mathrm{~km} / \mathrm{hour}$, a kangaroo uses all four feet and its tail. At greater speeds, it hops on its two hind legs. When hopping, the length of stride can be modelled as a function of speed. At $7 \mathrm{~km} / \mathrm{h}$, the stride length is about 1 m . The length increases approximately 0.1 m for each increase of $1 \mathrm{~km} / \mathrm{h}$ in speed.

a) What is the stride length for a speed of $10 \mathrm{~km} / \mathrm{h}$?
b) Write the equation of this line.
c) While hiking in the bush, you spot fresh kangaroo tracks. The distance between prints is 2.1 m . About how fast was the kangaroo going?
d) If the tracks are 10 minutes old and it has continued hopping at this speed, how far away is the kangaroo now?

ANSWERS:

$\begin{array}{lll}\text { 1.a) } y=-556 x+5380 & \text { b)slope:amount it depreciates } y \text {-int:price when new } \quad \text { c) } \$ 3712\end{array}$
2. a) initial $\$ 50, \$ 78 /$ year
b) $\mathrm{V}=78 \mathrm{t}+50$
c) $\$ 1220$
3. $y=0.06 x+6$
$\begin{array}{llll}\text { 4. a) } \$ 40 \text { monthly fee, } \$ 18 \text { per visit } & \text { b) } C=18 x+40 & \text { c) } \$ 670 & \text { d) } 8 \text { visits }\end{array}$
5.a) $y=180 x+2650 \quad$ b)slope: $\$ 180$ for each credit y-int: $\$ 2650$ is the fixed cost of room and board.
6. $\mathrm{C}=175 \mathrm{~d}+400, \$ 2150$
7. a) $C=4 n, C=2 n+12$ b) For 6 visits they cost the same, A is cheaper for less than 6 visits, B is cheaper for more than 6 visits.
8. 227.5 m
$\begin{array}{lll}\text { 9.a) } 1.3 \mathrm{~m} & \text { b) } y=0.1 x+0.3 & \text { c) } 18 \mathrm{~km} / \mathrm{h} \mathrm{d}) 3 \mathrm{~km}\end{array}$

