Station A

<lgnore \#1 \& \#2 in the answers>

3. Simplify each expression by collecting like terms.

a) $\quad 5 x+(-3)+(-3 x)-(-4)$
b) $\quad 5 x^{2}+1-3 x+4 x^{2}-7 x-4$

Station B

1. Simplify

a) $\left(4 m^{2}-7 m+3\right)+\left(2 m^{2}-3 m-1\right)$
b) $\left(3 x^{2}-2 x+7\right)-\left(5 x^{2}-3 x-4\right)$
2. Simplify FIRST, then evaluate for $\mathrm{k}=-3$.

$$
(\mathrm{k}+3)-\left(2 \mathrm{k}^{2}-3 \mathrm{k}+4\right)-\left(3 \mathrm{k}^{2}-1\right)+(5 \mathrm{k}-3)
$$

3. The length of a rectangle is 3 less than twice the width. Determine a simplified expression for the perimeter of the rectangle.

Station C

1. Simplify.

a) $\left(x^{6}\right)\left(x^{3}\right) \quad$ b) $\frac{y^{10}}{y^{-4}}$ c) $\left(x^{5}\right)^{2} \quad$ d) $\frac{\left(x^{-5}\right)\left(x^{7}\right)}{x^{6}}$
2. Simplify.
a) $\left(5 x^{3} y^{-2}\right)\left(-2 x^{5} y\right)$ b) $\frac{-2 x^{5} y}{8 x y^{-3}}$ c) $\left(-4 x^{5} y^{-3}\right)^{2}$
3. Simplify.
a) $\left(2 x^{3} y^{-1}\right)\left(-x y^{5}\right)^{2}$
b) $\frac{\left(6 a^{3} b^{2}\right)^{2}}{\left(-2 a^{2} b\right)^{3}}$
c) $\frac{\left(-3 \mathrm{~m}^{4} \mathrm{n}^{5}\right)^{3}\left(2 \mathrm{mn}^{3}\right)^{2}}{\left(-2 \mathrm{~m}^{-1} \mathrm{n}^{2}\right)^{3}}$

Station D

1. Simplify.
a) $5(3 x-4)$
b) $-2 x(7 x+1)$
c) $3 \mathrm{a}^{2} \mathrm{~b}\left(5 \mathrm{ab}-2 \mathrm{ab}^{3}\right)$
d) $2 x\left(3 y-4 x y^{2}\right)-3\left(3 x y-7 x^{2} y^{2}\right)$
2. Solve.
a) $3 x-2=10$
b) $\frac{x}{5}=-2$
c) $5-3 \mathrm{k}=-4$

Station E

1. Solve.

a) $3 x-4+7 x-1=3-4 x$
b) $3(2 x-5)=4 x+2(x-6)$
c) $3(\mathrm{w}-4)-2(5-2 \mathrm{w})=-4(1-\mathrm{w})-(3 \mathrm{w}+5)$
d) $\frac{x}{3}-5=\frac{2 x}{5}+\frac{2}{3}$
e) $\frac{3 x}{2}-\frac{2 x-1}{6}=2-\frac{3}{4} x$
2. Show a FORMAL CHECK to determine whether or not $x=4$ is a solution to the equation below. (**no marks for solving....just the check. Don't solve...do a check!!!!)

$$
7-3(2 x-1)=4(3-2 x)+6
$$

Station F

Create and solve using an algebraic model.
(let statements, equation, solution, concluding statement)

1. One number is 5 less than twice the other number. The sum of the numbers is 22 . Find the numbers.
2. The length of a rectangle is 3 more than the width. The perimeter is 34 cm . Find the dimensions of the rectangle.
3. Liron has 72 coins made of up quarters (25 cents each) and nickels (5 cents each). The total value of the coins is $\$ 14.20$. How many of each type of coin does Liron have?

Station G

1. Solve.
a) $2: 7=10: x$
b) $\mathrm{b}: 7=17: 40$
c) $2: 4: x=9: y: 20$
2. Solve each of the following by creating an algebraic model and solving.
(let statements, equation, solve, concluding statement)
a) The ratio of yellow to blue for a particular shade of green paint is $2: 5$. How much blue and how much yellow do you need to make 250 mL of the green paint?
b) Jesse used 42L of gas to drive 750 km . How far can he drive with 55L of gas?
