3.8 - Linear Models

Linear relations are defined by two main components.

1) The constant of variation or rate of change (RoC) \longleftarrow How do things change?
2) The constant value or initial value

Example 1: You're planning a large event for friends and family at a local venue. The venue charges a fixed cost of $\$ 150$ to rent their space. Their charge an additional $\$ 6$ per guest for food and drink.

a) How do you find the cost for 10 guests?

$$
\begin{aligned}
\text { Cost } & =150+6(10) \\
& =150+60 \\
& =210
\end{aligned}
$$

$\therefore 1+$ will cost $\$ 210$
b) How do you find the cost for 50 guests?

$$
\begin{aligned}
\text { Cost } & =150+6(50) \\
& =150+300 \\
& =450
\end{aligned}
$$

$$
\therefore \text { it will cost } \$ 450
$$

What is the same for a) and b)? What changes?
\longrightarrow The fixed cost (\$150) stays the same. The number of guests changes (variable).
c) How do you find the cost for " n " guests?

This gives us a linear relationship that models this situation!

The constant of variation in our relation is \qquad It represents a unit rate. The constant value in our relation is \qquad . It represents the fixed amount.

Linear relationships can be written in the following way:

Example 2: Rim opens a savings account and starts off with $\$ 45$. They plan to put aside $\$ 25$ each month into this account.
a) Determine a equation that models how much Rim has in their bank account over time.

$$
V=25 n+45
$$

$$
\begin{aligned}
& \text { Let } n \text { represent } \\
& \text { \# of months }
\end{aligned}
$$

b) Fill out a table of values for 6 months.
c) Use your table of values to graph the relationship.

Bank Account Over time

n	V
0	45
1	$70+25$
2	95
3	$2+25$
4	120
5	170
5	170
6	195

d) Use your graph to estimate how much money Rim will have after one year. Use dotted lines on the graph.

$$
\text { About } \$ 330
$$

e) Use your equation to verify your answer from d).

Don't forget brackets $V=25 n+45$
when substituting. Sub $n=12$

$$
\begin{aligned}
V & =25(12)+45 \\
& =345
\end{aligned}
$$

The amount

$$
\text { is exactly } \$ 345
$$

f) How would your graph change if Rim saved more money per month?

Example 3: Jason won a $\$ 125$ prize in a contest and immediately put it into their bank account. With the money, Jason starts a daily habit of buying a specialty coffee at Garbucks for \$3.50.
a) What is the constant value? What is the constant of variation?

$$
\$ 125
$$

b) Determine an equation that models how much money Jason has in their account over time.

$$
\begin{array}{ll}
A=125-3.50 n & \text { Let } n \text { represent } \\
A=-3.50 n+125 & \text { H of days }
\end{array}
$$

c) Fill out a table of values and use it to graph the relationship. Make your graph go

I	D	
n	A	
0	125	
10	90	$2-35$
20	55	$2-35$
30	20	2
40	$?$	

d) Jason has $\$ 30.50$ left in their bank account. Use the graph to estimate how many days they have been buying coffee. About 28 days
e) Verify your answer in d) algebraically to determine the exact number of days.

$$
\begin{aligned}
A & =125-3.50 n \\
S u b A & =30.50 \\
30.50 & =125-3.50 n \\
30.50-125 & =-3.50 n \\
\frac{-94.50}{-3.50} & =\frac{-3.50 n}{-3.50} \\
27 & =n
\end{aligned} \quad \therefore 1+\text { would take } \quad 27 \text { days }
$$

Example 4: Find the equation that represents each of the following tables of values.

