3.6 Appreciation and Depreciation

Ex. 1 A collectible action figure worth $\$ 100$ increases in value by 20% each year.

a) Complete the table to show the value at the end of each year for 10 years.

Time $\mathbf{(y r s)}$	Value $\mathbf{(\$)}$
0	100
1	120
2	144
3	172.8
4	207.36
5	248.83
6	298.60
7	358.32
8	429.98
9	515.98
10	619.17

SOLID line
Since 1.5 years is
Valid
c) The intial value of the toy was \qquad
$\$ 100$. The value gets multiplied by \qquad 1.2 each year.
d) Write an equation to model the toy's value, V , after t years.

$$
\begin{aligned}
\begin{array}{l}
\text { Value } \\
\text { of the } \\
\text { toy } \\
\text { toy }
\end{array} & =100(1.2)^{t} \longleftarrow \neq 1 \text { of years } \\
& \begin{aligned}
\prod_{\text {nita }} \\
\text { Value }
\end{aligned}
\end{aligned}
$$

e) Use your equation to find the value after 15 years.

$$
\begin{array}{rlrl}
V & =100(1.2)^{15} & \frac{C a l c ?}{x^{y}} \\
& =1540.70 & & \text { or }
\end{array}
$$

The toy model is an example of appreciation.
q Vale goes up!

Appreciation

- the value increases over time
- the graph rises from left to right

Sneaker Value

Pokemon Card Value

- the values in the table are getting bigger (added or multiplied by a \# greater than 1)

Time (yr)	Value (S)
0	50
1	60
2	70
3	80
4	90
5	100

Liners appreciation

Appreciation

- the initial value in an equation is added to or multiplied by a \# greater than 1.

$$
\begin{aligned}
& V=3000(1.05)^{\mathrm{t}} \\
& \text { Nonlinear } \\
& \text { (Multiplying by } 1.05 \text { each time) }
\end{aligned}
$$

Depreciation

- the value decreases over time
- the graph falls from left to right

- the values in the table are getting smaller (subtracted or multiplied by a \# smaller than 1)

- the initial value in an equation is subtracted from or multiplied by a \# less than 1.

$$
\begin{aligned}
& \text { Less than } 1 \\
& 0.95 \rightarrow 95 \% \\
& 100 \%-95 \% \\
& =5 \% \\
& \text { Down by 5\% each year }
\end{aligned}
$$

Ex. 2 A new set of winter tires worth $\$ 800$ decreases in value by $\$ 50$ for every month that they are used.

a) Complete the table to show the value at the end of each month for 10 months.

b) Display the information from the table in a graph.
c) The intial value of the tires was

Value over Time

\qquad each month.
d) Write an equation to model the tires' value, V , after t months.

$$
V=\overbrace{\text { Initial value }}^{800}-\overbrace{\text { subtract }}^{50 t} 50 \text { each month }
$$

e) Use your equation to find the when the tires no longer have any value.

$$
\begin{array}{rlrl}
V & =800-50 t & \\
\text { Sub V } ~ & & \\
0 & =800-50 t & & \text { The value will } \\
\frac{-800}{-50} & =\frac{-50 t}{-50} & \text { be zero after } \\
16 & =t & & 16 \text { months. }
\end{array}
$$

The tire model is an example of depreciation.
V Value gees DOWN'.

Ex. 3 Describe the growth pattern represented by each model.
(appreciation or depreciation, linear or non-linear, how much does it increase/decrease for each time period)

c)

Time (yr)	Value (\$)
0	300
1	280
2	260
3	240
4	220
5	200

d)

Time (yr)	Value (\$)
0	300
1	330
2	363
3	399.3
4	439.23
5	483.15

e) $\quad V=2000(0.85)^{t}$
f) $V=150+25 t$

