2.10B Modelling with Algebra - Day 2

Ex. 1 Test this riddle with a few different numbers. Then create an algebraic expression for each stage of the riddle. Explain how generalizing the expressions helps you understand how the riddle works.

Example of a number riddle:
> Pick a number.
> Add 5 to your number.

$$
\frac{2(x+5)-2}{2}-x
$$

> Double your result.
> Subtract 2.

$$
=\frac{2 x+10-2}{2}-x
$$

> Divide your answer by 2.
> Subtract your original number.

$$
=\frac{2 x+8}{2}-x
$$

> What is your answer?

$$
\begin{aligned}
& =x+4-x \\
& =4
\end{aligned}
$$

1. Measurement Problems

Ex. 2 The sides of a triangle are 3 consecutive whole numbers. The perimeter of the triangle is 48 cm . How long is each side?

Let x be the smallest side
Let $x+1$ " " next "
Let $x+2$ " " largest "

$$
\begin{array}{lr}
P=\text { side }+ \text { side } 2+\operatorname{side} 3 \\
48=x+x+1+x+2 \\
48=3 x+3 & \text { Answers } \\
48-3=3 x & x \rightarrow 15 \\
45=3 x & x+1 \rightarrow 16 \\
\frac{45}{3}=x & \\
15=x &
\end{array}
$$

$$
\begin{aligned}
& \therefore \text { The sides } \\
& \text { of my tingle } \\
& \text { are } 15 \mathrm{~cm}, 16 \mathrm{~cm} \\
& \text { and } 17 \mathrm{~cm}
\end{aligned}
$$

Ex. 3 The length of a rectangle is 3 m greater than the width. The perimeter is 26 m . What are the dimensions of the rectangle?
Let w be the width Let $\omega+3$ be the length

$$
26=w+w+3+w+w+3
$$

$$
26=4 w+6
$$

$$
26-6=4 w
$$

$$
\frac{20}{4}=\frac{4 w}{4}
$$

$$
5=w
$$

$$
\begin{gathered}
\underline{\omega+3} \\
(5)+3 \\
=8
\end{gathered}
$$

\therefore The length is $8 m$ and width is 5 m
2. Money Problems

Ex. 4 Kate earned $\$ 3$ more than double the amount Jake earned. The difference of their earnings was $\$ 15$. How much did each person earn?

Let J represent the amt. that Jake earned.
Let $2 J+3$ " " "Kate

$$
\begin{aligned}
\text { Kate }-J a k e & =15 \\
2 J+3-J & =15 \quad \therefore \text { Kate made } \$ 27 \\
J+3 & =15 \quad \text { and Jake made } \$ 12 \\
J & =15-3 \\
& =12
\end{aligned}
$$

Kate

$$
=2(12)+3
$$

Ex. 5 A parking meter contains $\$ 27.05$ in quarters and dimes. There are 146 coins in total. How many quarters are there?
Let q represent t of quarters
Let $146-q$ rep. $\#$ of dimes
Value $(\#$ coins) (value of the coin)

$$
\begin{aligned}
& \text { quarters dimes } \\
& q^{(0.25)}+(146-q)(0.10)
\end{aligned}=27.05
$$

$\times 100$

$$
\begin{aligned}
& q(25)+(146-q)(10)= \\
& 25 q+1460-10 q=2705
\end{aligned}
$$

$$
15 q+1460=2705
$$

$$
15 q=2705-1460
$$

There are

$$
\frac{15 q}{15}=\frac{1245}{15}
$$ 83 quarters.

$$
q=83
$$

Ex. 6 Rosalee's mother is 4 years older than twice Rosalee's age.
The difference of their ages is 22 years. Find their ages.

EXTENSION QUESTION! For those that want a challenge!
At the beginning of a gathering, each person in the room greets every other person exactly once.

How many greetings are there if there are 3 people in the room? 5 people in the room? 20?

What expression could you use to determine the number of greetings for any number of people in the room?

