PART A

- A taxi service charges an initial fee of \$5.00, plus \$2.00 for each kilometre travelled.
 - a) Complete a table of values showing the total cost of hiring the taxi service for 0, 1, 2, 3, 4 and 5 kilometres.
 - b) Sketch a graph to show the total cost of using the taxi service up to a distance of 10 kilometres.
 - c) Identify the start value and rate of change for the total cost of using the taxi service.
- d) Create an equation to model the total cost, *C*, of using the taxi service for a distance of *d* kilometres.
- e) Use one of your representations from parts (a), (b) and (c) to determine the total cost of a 50 km taxi ride.
- 2) A full jar of candies contains 60 candies. Each day, 4 candies are removed from the jar.
 - a) Complete a table of values showing the number of candies in the jar after 0, 1, 2, 3, 4, 5 and 6 days.
 - b) Sketch a graph to show the number of candies in the jar each day from the time it is full to the time it is empty.
 - c) Identify the initial value and rate of change for the number of candies in the jar.
 - d) Create an equation to model the number of candies in the jar, *n*, after *t* days.
 - e) For what values of *t* does your equation apply?
- 3) A linear relationship between volume and time is described by the given start value and rate. Determine an equation to model the volume (V) at a given time (t).

a) Start: 8 L	b) Start: 540 mL	c) Start: 0 cm^3	d) Start: 30 gal
Rate: 3 L/min	Rate: -20 mL/s	Rate: 5 cm ³ /min	Rate: 0 gal/min

- 4) For each of the following linear relations, state the start value (initial value) and the rate of change. It is not necessary to include units in your answers.
 - a) V = 50 + 2t b) V = 50 2t c) A = 350 + 40n d) p = 10n + 25
 - e) y = 125x 30 f) $d = -\frac{2}{3}n 90$ g) v = -9.8t h) d = 16

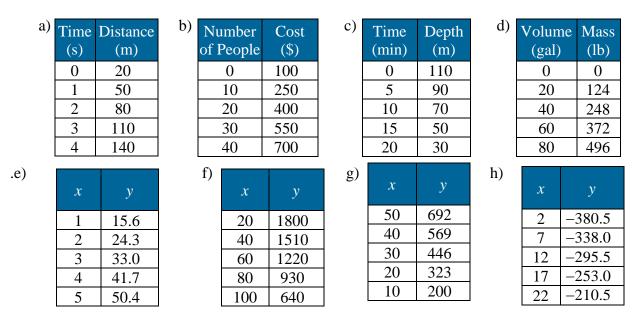
- 5) You can estimate your maximum heart rate, in beats per minute (bpm), by subtracting your age from 220.
 - a) Create an equation to model maximum heart rate (H) for a given age (x).
 - b) Use your equation to estimate your maximum heart rate.

PART B

- 6) When a swimming pool is first opened for the season, it already contains 10 000 gallons of water. Water is added to the pool using a garden hose from which water flows at a rate of 500 gallons per hour. Filling continues until the pool contatains 14 500 gallons of water.
 - a) Complete a table of values showing the volume of water in the pool every hour from when filling begins to when it is complete.
 - b) How long does it take to fill the pool?
 - c) Sketch a graph to display the volume of water in the pool as it is filled.
 - d) Use your graph to estimate the volume of water in the pool four and a half hours after filling begins.
 - e) Create an equation to model the volume of water in the pool *t* hours after filling begins.
 - f) What values can be used for *t* in your equation?
 - g) Create another equation for the volume of water in which *t* represents the number of minutes after filling begins.
 - h) Use your equation to determine the volume of water in the pool 375 minutes after filling begins.

7) For each of the following linear relations,

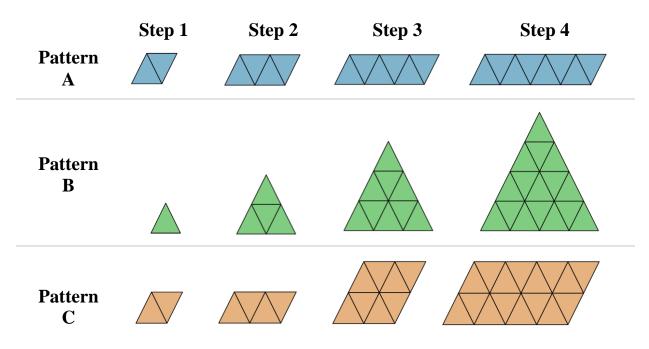
- i) state the initial value.
- ii) state the rate of change.
- iii) determine an equation to model the relationship.



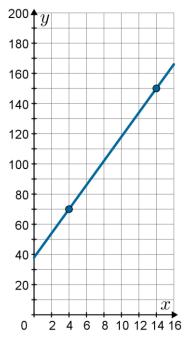
- 8) Mia walks at a speed of 2.5 m/s on a straight path from her home to her school, a total distance of 340 m.
 - a) Find an equation to model Mia's distance from home (d) after she's been walking for t seconds.
 - b) Find an equation to model Mia's distance **from the school** (*d*) after she's been walking for *t* seconds

PART C

9) Consider the following patterns:



- a) Create a table of values for each pattern, showing the number of small triangles needed at each step from the first step through the seventh step.
- b) For each pattern, state whether the rate of change is constant, increasing or decreasing.
- c) Hypothesize the number of small triangles needed for Step 0 of each pattern.
- d) Which pattern will require the least number of small triangles at step 15?
- e) Which pattern will require the greatest number of small triangles at step 15?
- f) For each pattern, determine an equation that could be used to model the number of small triangles (*n*) required for each step (*s*).
- 10) Find an equation for the linear relation shown in the graph on the right.



ANSWERS				
1) a)	Distance (km)	Total Cost (\$)	b) 24 Total Cost (\$) 20 16	
	0	5.00	12	
	1	7.00	8	
	2	9.00	⁴ Distance (km)	
	3	11.00	0 1 2 3 4 5 6 7 8 9 10	
	4	13.00		

- c) Start value: \$5.00 Rate: \$2.00/km
- d) C= 2a+5
- e) \$105.00

