2.6 Solve Simple Equations

- To solve an equation means to find the value of the variable for which the equation is true.
- Think of an equation as being like a balance with the equal sign as the centre. Whatever you do to one side, you also have to do to the other.
- You can do anything to it! As long as you do it to both sides.

Ex
a) $x+5=9$

$$
\begin{aligned}
x+5-5 & =9-5 \\
x+0 & =4 \\
x & =4
\end{aligned}
$$

b) $x-2=1$

$$
\begin{aligned}
x-2+2 & =1+2 \\
x & =3
\end{aligned}
$$

c) $3 x-2=4$

$$
\begin{aligned}
3 x-2+2 & =4+2 \\
3 x & =6 \\
\frac{3 x}{3} & =\frac{6}{3} \\
x & =2
\end{aligned}
$$

To ISOLATE a variable you need to apply opposite operations.

What is the opposite of each operation?

Ex. 2 Solve.
a) $\begin{aligned} m+3 & =4 \\ 3 & -3 \\ m & =1\end{aligned}$

$$
\begin{aligned}
& \hat{*} \frac{\text { Communication }}{\text { Keep equal signs aligned, }} \begin{array}{l}
\text { one per line. }
\end{array}
\end{aligned}
$$

b) $x-2=6$

$$
\begin{aligned}
x-2+2 & =6+2 \\
x & =8
\end{aligned}
$$

c) $\frac{4 x}{4}=\frac{20}{4}$

$$
x=5
$$

d) $\frac{x}{3}=12$

$$
\begin{aligned}
3\left(\frac{x}{3}\right) & =3(12) \\
x & =36
\end{aligned}
$$

e) $x^{2}=36$

$$
\begin{aligned}
\sqrt{x^{2}} & =\sqrt{36} \\
x & =6
\end{aligned}
$$

$$
\text { f) } \begin{aligned}
2 x-11 & =27 \\
2 x-11+11 & =27+11 \\
2 x & =38 \\
\frac{2 x}{2} & =\frac{38}{2} \\
x & =19
\end{aligned}
$$

"Formal Check"

LS	RS	Check your solution to example 2 f).
$2 x-11$	27	
$\begin{aligned} & \frac{x}{\frac{x}{2}(19)} \\ & =38-11 \\ & =37 \end{aligned}$		Checking a solution
		Substitute the root (the answer) into the right and left side of the equation
	$\because \angle S=R S$ $\therefore Q E D$	Both sides must be equal.
		Communication
	it is." roven	You must separate the Left Side (LS) from the Right Side (RS) of the equation.

$$
5-\frac{x}{2}=3
$$

g) $5-\frac{x}{2}=3$
$5-\frac{x}{2}-5=3-5$

$$
\begin{aligned}
(-2)\left(-\frac{x}{2}\right) & =(-2)(-2) \\
x & =4
\end{aligned}
$$

$$
5-\frac{x}{2}+\frac{x}{2}=3+\frac{x}{2}
$$

$$
5=3+\frac{x}{2}
$$

$$
5-3=3+\frac{x}{2}-3
$$

$$
\text { (2) } 2=\frac{x}{2}(2)
$$

$$
4=x
$$

i) $5 m-\frac{4}{3}=2$
h) $3 x+\frac{2}{5}=-4$

$$
\begin{aligned}
3 x+\frac{2}{5}-\frac{2}{5} & =-4-\frac{2}{5} \\
3 x & =-4-\frac{2}{5} \\
3 x & =-\frac{20}{5}-\frac{2}{5} \\
3 x & =-\frac{22}{5} \\
\frac{3 x}{3} & =-\frac{22}{5}\left(\frac{1}{3}\right) \\
x & =\frac{-22}{15}
\end{aligned}
$$

Ex. 3 At a computer store, USB's sell for $\$ 15$ each. A customer buys $\$ 120$ worth of USB's. Write and solve an equation to find the number of packages of USB's that were bought.

$$
\begin{gathered}
15 x=120 \\
\frac{15 x}{15}=\frac{120}{15} \\
x=8
\end{gathered}
$$

©) Original Artist
Reproduction rights obtainable from

 www. CartoonStock.com
"Just a darn minute - yesterday you said that X equals two!"

