2.4 Exponent Laws - Day 2

Ex. 1 Simplify.

\rightarrow	$(2)\left(2^{2}\right)\left(2^{2}\right)\left(2^{2}\right)$
$=$	$(2)(2)(2)(2)(2 Y(2)(2)(2)$

$$
\text { a) } \begin{aligned}
& \left(2^{2}\right)^{4} \\
= & 2^{2 \times 4} \\
= & 2^{8}
\end{aligned}
$$

Raising a Power to an Exponent To raise a power to another exponent, multiply the exponents without changing the base.
b) $\left(x^{3}\right)^{2}$
$=x^{6}$

Power of a Power Rule

$$
\left(m^{a}\right)^{b}=m^{a \times b}
$$

Ex. 2 Simplify.

Power of a Product

The exponent is applied to each part of the base. $(a b)^{m}=a^{m} b^{m}$

- a) $\left(2 x^{5}\right)^{4}$
$\left.=\left(2 x^{5}\right) / 2 x^{5}\right)\left(2 x^{5}\right)\left(2 x^{5}\right)$
$\rightarrow=2^{4}\left(x^{5}\right)^{4}$
$=16 x^{20}$
b) $\left(-2 x y^{2}\right)^{3}$
$\begin{aligned} & \left(-2 x y^{2}\right)^{3} \\ = & (-2)^{3} x^{3}\left(y^{2}\right)^{3} \\ = & -8 x^{3} y^{6}\end{aligned} \quad\left\{\begin{array}{c}(-2)(-2)(-2) \\ =-8\end{array}\right.$

Ex. 3 Simplify.
a) $\left(\frac{2}{3}\right)^{3}$
$=\left(\frac{2}{3}\right)\left(\frac{2}{3}\right)\left(\frac{2}{3}\right)$
$=\frac{2^{3}}{3^{3}}$
$=\frac{8}{27}$
b) $\left(\frac{5}{x}\right)^{2}=\frac{5^{2}}{x^{2}}$
$=\frac{25}{x^{2}}$

Power of a Quotient
The exponent is applied to each part of the base.

$$
\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}
$$

Ex. 4 Simplify.
a) $\left(-4 x^{2} y\right)^{4}$
$=(-4)^{4}\left(x^{2}\right)^{4} y^{4}$
b) $\frac{\left(2 x^{3} y^{-1}\right)^{3}}{\left(-2 x^{2} y^{-7}\right)^{2}}$
c) $\left(-x^{5} y^{-2}\right)^{3}\left(3 x^{-2} y^{3}\right)^{2}$
$=256 x^{8} y^{4}$
$=\frac{2^{3} x^{9} y^{-3}}{(-2)^{2} x^{4} y^{-14}}$
$=\left((-1)^{3} x^{15} y^{-6}\right)\left(3^{2} x^{-4} y^{6}\right)$

$$
\begin{aligned}
& y^{-3-(-14)} \\
= & y^{-3+14}
\end{aligned}
$$

$$
=\frac{8 x^{9} y^{-3}}{4 x^{4} y^{-14}}
$$

$$
\begin{aligned}
& =\left(-x^{15} y^{-6}\right)\left(9 x^{-4} y^{6}\right) \\
& =-9 x^{11} y^{0}
\end{aligned}
$$

$$
\begin{aligned}
=2 x^{5} y^{\prime \prime} & =-9 x^{\prime \prime}(1) \\
& =-9 x^{\prime \prime}
\end{aligned}
$$

Exponent Laws

SUMMARY

Multiply powers
$m^{3} \cdot m^{4}$
$=m^{3+4}$
$=m^{7}$

Divide powers
$m^{6} \div m^{1}$
$=m^{6-1}$
$=m^{5}$
add exponents
\square subtract exponents

$$
\begin{gathered}
\text { Power of a power } \\
\hline\left(m^{6}\right)^{3} \\
=m^{6 \times 3} \\
=m^{18}
\end{gathered}
$$

 multiply exponents

Multiply the coefficients

Multiplication
$3 m^{2} \cdot 4 m^{5}$
$=12 m^{7}$

$50 m^{8} \div 2 m^{3}$
$=25 \mathrm{~m}^{5}$
Divide the coefficients

Power of a Power

$$
\begin{aligned}
& \left(4 m^{3}\right)^{2} \\
& =4^{2} \mathrm{~m}^{6}
\end{aligned}
$$

$$
=16 m^{6}
$$

Exponent affects each part of the base

Ex. 5 Simplify.

$$
\begin{aligned}
& \text { a) }\left(a^{2} b^{3}\right)^{4} \\
& =a^{8} b^{12} \\
& \text { c) }\left(-x^{3}\right)^{2}\left(2 x^{4}\right)^{3} \\
& =\left((-1)^{2} x^{6}\right) \cdot\left(2^{3} x^{12}\right) \\
& =\left(x^{6}\right)\left(8 x^{12}\right) \\
& =8 x^{18} \\
& \text { e) } \frac{\left(-3 m^{2} n^{6}\right)\left(2 m^{4} n^{8}\right)^{3}}{\left(4 m n^{2}\right)^{3}} \\
& =\frac{\left(-3 m^{2} n^{6}\right)\left(2^{3} m^{12} n^{24}\right)}{4^{3} m^{3} n^{6}} \\
& \begin{array}{l}
=\frac{\left(-3 m^{2} n^{6}\right)\left(8 m^{12} n^{24}\right)}{64 m^{2} n^{6}} \\
\text { Reduce } \\
\frac{24}{64}=8=-24 m^{14} n^{30} \\
64 m^{2} n^{6}
\end{array} \\
& =\frac{-3}{8} \\
& =\frac{-3 m^{12} n^{24}}{8} \\
& =-\frac{3}{8} m^{12} n^{24} \\
& \text { b) }\left(-4 m^{2}\right)^{3} \\
& =(-4)^{3} m^{6} \\
& =-64 m^{6} \\
& \text { d) } \frac{\left(5 c^{3} d\right)\left(4 c^{2} d^{2}\right)}{\left(2 c^{2} d\right)^{2}} \\
& =\frac{20 c^{5} d^{3}}{2^{2} c^{4} d^{2}} \\
& =\frac{20 c^{5} d^{3}}{4 c^{4} d^{2}} \\
& =5 c d \\
& \text { f) } \frac{\left(2 m^{3}\right)^{4}}{24 m^{5}} \\
& =\frac{2^{4} m^{12}}{24 m^{5}} \\
& =\frac{16^{18} m^{12}}{24.5 m^{5}} \\
& =\frac{2}{3} m^{7} \\
& =\frac{2}{3} m^{7}
\end{aligned}
$$

