2.2 Add and Subtract Polynomials

1. Vocabulary
a) Term: an expression formed by the product of a number and/or variable.
ex: $5 x, 7 x^{2} y^{3} z, \quad 8, \quad x$

Quiz yourself!

Q1 The result of $(3 x+4 x)$ is $7 x^{2}$.

$$
\text { T/F FALSE }(=7 x)=
$$

Q2 Using tiles, you can remove two zero pairs to simplify $3 x+(-2 x)$.
T/F TRUE =!

Q3 Like terms have the same variable and the same exponent.
T/F TRUE \#
Q4 $4 \mathrm{x}-5+(-2 \mathrm{x})-3$ simplifies to $2 \mathrm{x}-2$.
T/F $\begin{gathered}4 x-5-2 x-3 \\ =2 x-8\end{gathered}$ FALSE
Q5 A polynomial with one term is a \qquad Monomial A polynomial with two terms is a \qquad .
A polynomial with three terms is a \qquad .

Recall: Like terms have the same variables) with the same exponent.
To simplify polynomials, combine like terms by adding or subtracting their coefficients. The variable and its exponent stays the same.

Ex.1: Simplify

a) $2 x+6 y-8+x-6 y-3$

$$
\begin{aligned}
& =2 x+x+6 y-6 y-8-3 \\
& =3 x-11
\end{aligned}
$$

b) $\begin{aligned} & 6 x^{3}+(-2)-(-3 x)-3 x^{2}+x+4 x^{3}+6 \\ = & 6 x^{3}-2+3 x-3 x^{2}+x+4 x^{3}+6\end{aligned} \quad$ Simplify signs.

$$
\begin{aligned}
& =\frac{6 x^{3}-2+3 x-3 x^{2}+x+4 x^{3}-6}{}=6 x^{3}+4 x^{3}-3 x^{2}+3 x+x-2+6 \\
& =10 x^{3}-3 x^{2}+4 x+4 \\
& \text { c) }-a^{2}+a b-b^{2}-2 b^{2}+a b^{2}-4 a^{2}+5 a b \\
& =-a^{2}-4 a^{2}-b^{2}-2 b^{2}+a b+5 a b+a b^{2} \\
& =-5 a^{2}-3 b^{2}+6 a b+a b^{2}
\end{aligned}
$$

. Ex. 2 Simplify.
a) $(5 x-3)+(4 x+6)$

$$
=5 x-3+4 x+6
$$

$$
=9 x+3
$$

b) $\mid\left(3 m^{2}-8 m+2\right)+\left(\left(5 m-1+2 m^{2}\right)\right.$

$$
\begin{aligned}
& =3 m^{2}-8 m+2+5 m-1+2 m^{2} \\
& =5 m^{2}-3 m+1
\end{aligned}
$$

c) $\left(5 x^{2}+3 x y-2 y^{2}\right)+\left(3 x^{2}-7 x y-y^{2}\right)$

$$
\begin{aligned}
& =5 x^{2}+3 x y-2 y^{2}+3 x^{2}-7 x y-y^{2} \\
& =8 x^{2}-4 x y-3 y^{2}
\end{aligned}
$$

To subtract an expression in brackets, remove the brackets and subtract each term.

Ex. 3 Simplify.

$$
\text { a) } \begin{aligned}
& (3 x-7)-(7 x+2) \\
= & 3 x-7-7 x-2 \\
= & -4 x-9
\end{aligned}
$$

$$
\text { b) }\left(5 x^{2}+8 x-2\right)-\left(4 x^{2}-3\right)
$$

$$
=5 x^{2}+8 x-2-4 x^{2}+3
$$

$$
=1 x^{2}+8 x+1
$$

$$
=x^{2}+8 x+1
$$

$$
\text { c) } \begin{aligned}
& \left(4 x^{2}-x+7\right)-1\left(2 x^{2}-8 x+5\right) \\
= & 4 x^{2}-x+7-2 x^{2}+8 x-5 \\
= & 2 x^{2}+7 x+2
\end{aligned}
$$

Ex. 7 Simplify, THEN evaluate when $m=-2$

$$
\begin{aligned}
& \left.(m-3)+\left(6-5 m+m^{2}\right)-\left(2 m^{2}+4 m+1\right)-16 m^{2}-1\right) \\
& =m-3+6-5 m+m^{2}-2 m^{2}-4 m-4-6 m^{2}+1 \\
& =m^{2}-2 m^{2}-6 m^{2}+m-5 m-4 m-3+6-1+1 \\
& =-7 m^{2}-8 m+3
\end{aligned}
$$

Sub $m=-2$

$$
\begin{aligned}
& =-7(-2)^{2}-8(-2)+3 \\
& =-7(4)+16+3 \\
& =-28+19 \\
& =-9
\end{aligned}
$$

Example 4: John is building a dock at his cottage. The length of the dock is twice the width, plus 3 meters.
a) Find asimplified algebraic expression for the perimeter of the dock.

$$
\begin{aligned}
& \text { Perineter }=\text { sidel }+ \text { side } 2+\ldots \\
& \begin{aligned}
P & =2 \omega+3+\omega+2 \omega+3 \\
& =6 \omega+6
\end{aligned}
\end{aligned}
$$

b) If the width of the dock is 4 m , find the perimeter of the dock.

$$
\omega=4
$$

$P=6 \omega+6$
Sub $\omega=4$

$$
\begin{aligned}
P & =6(4)+6 \\
& =30
\end{aligned}
$$

Ex. 5 Colin added a monomial, a binomial and a trinomial. The result was a binomial. What could the three polynomials he added together be?

Ex. 6 Determine the missing numbers to make the following true:
$\left(3 x^{2}+S_{x}-7\right)+\left(4 x^{2}+(-3 x)+(-2)=7 x^{2}+2 x-9\right.$

