Burger Shack

How would you remember this orde।

$$
\begin{aligned}
& 4 \text { cokes } \\
& 3 \text { hambugers } \\
& 2 \text { chicken } \\
& 5 \text { fries }
\end{aligned}
$$

How would you find the total cost? What info do you need?

What method did you use to find the total cost?

$$
\begin{aligned}
& 4 \text { cokes } \rightarrow 4(1.75) \\
& 3 \text { hambugers } \rightarrow 3(4.00)^{+} \\
& 2 \text { chicken } \rightarrow 2(3.00)^{+} \\
& 5 \text { fries } \rightarrow 5(2.25)^{+}
\end{aligned}
$$

2.1 Algebraic Expressions

Using Tiles to Model

1-Dimensional Models: used as counters/adding

2-Dimensional Models: used to represent area/multiplication

x^{2}

$-x^{2}$

Ex. 1 Write the algebraic expression represented by each model.

Ex. 2 Express the following polynomials with tiles.
a) $-x^{2}+4 x-3$
*PULL

因
b) $3 x^{2}-2 x+4$

Like Terms

Explain why each of the following groupings is equal to zero.

Ex. 3 Write an algebraic expression to represent the model shown.

Like Terms:
Terms that have the same variables with the same exponents.

Ex. 4 State if the terms are like or unlike.
a) $5 x ;-10 x ;\left(\frac{x}{4}\right)^{\rightarrow \frac{1}{4} x} \xrightarrow{\text { like }}$
b) $6 a b ;-7 b a ; a b$
c) $10 a ; 10 b$
unlike
d) $6 a b ; 7 a$
unlike
e) $10 a^{2} b c^{3} ;-2 b a^{2} c^{3} \quad$ like
f) $5 a^{2} b ; 3 b^{2} a$
unlike

Ex. 5 Simplify $4 \mathrm{x}-2 \mathrm{x}$.
\|

$$
=2 x
$$

Ex. 6 Simplify each expression by collecting like terms.

$$
\text { a) } \begin{aligned}
& 3 x+2-4 x+1 \\
= & 3 x-4 x+2+1 \\
= & -1 x+3 \\
= & -x+3
\end{aligned}
$$

c) $\quad 5 x+(-3)-(-2 x)+1$

$$
=5 x-3+2 x+1
$$

$$
=5 x+2 x-3+1
$$

$$
=7 x-2
$$

$$
\text { b) } 7 a+3 b-2 b+5 x
$$

$$
=7 a+b+5 x
$$

d) $3 w \in(-7) \leftarrow(\not+1)+(-3 w)$

$$
=3 \infty+7-1-3 \omega
$$

$$
=6
$$

Ex. 7 Dylan reaches into a bag of algebra tiles and pulls out a number of blue and red tiles. Simplified, his tiles represent the trinomial $3 x^{2}-5 x+4$. What combination of tiles could Dylan have pulled out?

Ex. 8 Create an algebraic expression to represent each of the following.
a) a number is doubled then increased by 7 \qquad
b) the variable w is squared and then 5 is subtracted from it $\omega^{2}-5$
c) the variable k is increased by 9 then divided by 2 \qquad

$$
\text { NOT } \rightarrow k+9 \div 2 \quad \frac{k+9}{2} \text { ON }(k+9) \div 2
$$

Ex. 9 Evaluate each expression for the given value of the variable.
a) 3-5x for $x=-1$
$=3-5(-1)$
$=3+5$
b) $3 m^{2}-2 m+1$ for $m=-2$
$=3(-2)^{2}-2(-2)+1$
$=3(4)-(-4)+1$
$=12+4+1$
$=17$

