1.9 Negative and Zero Exponents Time to investigate Use patterns to evaluate powers. No decimals (leave as a fraction). Complete the statements below and then describe the pattern. $\begin{array}{c} 3^{4} = 5 \\ 3^{3} = 27 \\ 3^{2} = 9 \\ 2^{2} = 9 \\ 2^{2} = 3 \\ 10^{2} = 100 \\ 10^{2} = 100 \\ 10^{2} = 100 \\ 2$ $2^{4} = |_{\mathcal{O}}$ $2^{3} = 8$ $2^2 = \gamma \sqrt{-2}$ $10^{-1} = 10^{-1} = 10^{-1} = \frac{1}{10^{-1}} = \frac{1}{10^{-1}} = \frac{1}{10^{-2}} = \frac{1}{10^{-2}}$ 2¹ = તે 3¹ = 3 2⁰ = 30 = | $2^{-1} = \frac{1}{2}$ $3^{-1} = \frac{1}{3}$ $3^{-2} = \frac{1}{4}$ $3^{-3} = \frac{1}{27}$ The last column is used in $2^{-2} = \frac{1}{4}$ 10⁻²= 1/100 scientific notation... which is the next lesson 2-3=1 $10^{-3} = \frac{1}{1000}$ Do you see a pattern? Dividing by the base each time What do you notice about 2¹, 3¹, 10¹? Means only raised to itself. ex 2'=2 Always equal to the base. What do you notice about 2°, 3°, 10°? Conclusion: Any base raised to the exponent 1 is the base

Let's take a look at the negative exponents.

What do you notice about 2⁻¹, 3⁻¹, 10⁻¹?

 $=\frac{1}{2}$ $(\frac{1}{3})$ $(\frac{1}{10})$

Any base raised to the exponent 0 is $\underline{1}$

What do you notice about 2⁻³ and 2³, 3⁻² and 3²?

$$\begin{aligned} \lambda &= \lambda^{2} \\ z &= \frac{1}{8} \\ z &= 8 \\ z &= \frac{1}{9} \\ z^{2} \\ Reflect \end{aligned} = \frac{1}{3^{2}} \\ \frac{1}{3^{2}} \\ z^{2} \\ z^{2}$$

λ.

Explain how to evaluate a power with a negative exponent.

One over the base to the positive

$$exponent$$

 $6^{-3} = \frac{1}{6^3}$
 $= \frac{1}{716}$

.

Summary

Any base raised to a negative exponent is equal to the reciprocal of the base raised to a positive exponent.

$$a^{-b} = \frac{1}{a^{b}}$$

Ex. 1 Write as a power with a positive exponent and then evaluate (No decimalsleave as a fraction)

a)
$$-2^{4}$$
 b) 2^{-4} c) $(-2)^{-4}$ d) $(-2)^{4}$
= -2^{4} = $\frac{1}{2^{4}}$ = $\frac{1}{(-2)^{4}}$ = $\frac{1}{(-2)^{4}}$ = $\frac{1}{16}$
= $\frac{1}{16}$ = $\frac{1}{16}$