1.9 Negative and Zero Exponents

Time to investigate

Use patterns to evaluate powers. No decimals (leave as a fraction). Complete the statements below and then describe the pattern.

What do you notice about $2^{1}, 3^{1}, 10^{1}$?

$$
\text { Means only raised to itself. ex } 2^{\prime}=2
$$

Always equal to the base.

What do you notice about $2^{0}, 3^{0}, 10^{\circ}$?

Conclusion:
Any base raised to the exponent 1 is the

\qquad Any base raised to the exponent 0 is

Let's take a look at the negative exponents.
What do you notice about $2^{-1}, 3^{-1}, 10^{-1}$?

$$
=\frac{1}{2}, \frac{1}{3}, \frac{1}{10}
$$

What do you notice about 2^{-3} and $2^{3}, 3^{-2}$ and 3^{2} ?

Explain how to evaluate a power with a negative exponent.

$$
\begin{aligned}
& \text { One over the base to the positive } \\
& \text { ex exponent } \\
& \begin{aligned}
6^{-3} & =\frac{1}{6^{3}} \\
& =\frac{1}{216}
\end{aligned}
\end{aligned}
$$

Summary

Any base raised to a negative exponent is equal to the reciprocal of the base raised to a \qquad .

$$
a^{-b}=\frac{1}{a^{b}}
$$

Ex. 1 Write as a power with a positive exponent and then evaluate (No decimalsleave as a fraction)
a) 4^{-2}
b) $(1234567)^{0}$
c) 5^{-3}
$=\frac{1}{5^{3}}$
$=\frac{1}{125}$
d) $3^{-7} \times 3^{5}$
$=3^{-7+5}$
$=\frac{1}{4^{2}}$
$=1$
$=\frac{1}{16}$
g) $10^{-5} \div 10^{-3}$
$=10^{-5-(-3)}$
$=10^{-2}$
$=\frac{1}{100^{2}}$
$=\frac{1}{10^{2}}$

f) $\left(3^{-2}\right)^{-4}$
$=3^{-2 x-4}$
$=3^{8}$
$=6561$
$=\frac{1}{32}$

Ex. 2 Evaluate and explain how the powers are different $=\frac{1}{100}$
a) -2^{4}
b) 2-4
c) $(-2)^{-4}$
d) $(-2)^{4}$
$=-2^{4}$
$=\frac{1}{2^{4}}$
$=\frac{1}{(-2)^{4}}$
$=16$
$=-16$

$$
=\frac{1}{16}
$$

$$
=\frac{1}{16}
$$

