1.8 Exponents

Ex. 1 Evaluate
a) $4^{3}=4 \times 4 \times 4$
b) $2^{4}=2 \times 2 \times 2 \times 2$ $=64$
$=16$
c) $(-3)^{2}$
d) $-3^{2}=-3^{2}$
$=(-3)(-3)$ What is the difference?
$=9$
\uparrow

Base is -3 , because of the brackets
f) $(-1)^{\frac{\circ}{5 D D}}$
$=(-1)(-1)(-1)(-1)(-1)$
$=(1)(1)$
$=-1$

$$
\text { h) } \begin{aligned}
& (-2)^{3^{12 D D}} \\
= & (-2)(-2)(-2) \\
= & 4(-2) \\
= & -8
\end{aligned}
$$

i) $\begin{aligned}-5^{2} & \\ & =-5^{2} \\ & =-5 \times 5 \\ & =-25\end{aligned}$
$=-25$
-25
d) $\begin{aligned}-3^{2} & =-3 \times 3\end{aligned}$
$=-9$

Base is \qquad the negative is NOT part of the base
$--9$
part of the base
g) $4^{2}=16$
j) $\begin{aligned}(-4)^{2} & =(-4)(-4) \\ & =16\end{aligned}$

When the base is negative...
Even exponent--> positive answer
Odd exponent--> negative answer

Ex. 2 Evaluate
a) $\begin{aligned} & 5^{1} \\ & =5\end{aligned}$
b) $\left(\frac{1}{2}\right)^{4} \quad$ c) $\left(-\frac{1}{3}\right)^{2}$
$=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=\left(-\frac{1}{3}\right)\left(-\frac{1}{3}\right)$
d) $-\left(\frac{2}{3}\right)^{3}$

$$
=-\left(\frac{2}{3}\right)\left(\frac{2}{3}\right)\left(\frac{2}{3}\right)
$$

$=\frac{1}{16}=\frac{1}{9}=-\frac{8}{27}$

$$
=-\frac{8}{27}
$$

e) $\begin{aligned} &-199 \\ &=-1\end{aligned}$
e) $\begin{aligned} & -199 \\ & =-1\end{aligned}$
f) $(-1 \sqrt{2727 D}$
$=-1$
g) $(-1)^{98}$

$$
=1
$$

EVEN
h) -1^{98}

$$
\begin{aligned}
& =-1 \\
& =-1 \\
& =-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { BEMAS! } \\
& \text { i) } 2(-5)^{2} \\
& \text { j) } 4 \cdot 5^{2}+(3+1)^{2} \\
& \text { k) }(-3)^{\text {ODD }}-(-5)^{\text {EVEN }} \\
& =2 \cdot(-5)(-5)=4 \cdot 5^{2}+(4)^{2} \\
& =2(25) \\
& =4.25+16 \\
& =100+16 \\
& =116 \\
& \text { k) }(-3)^{3}-(-5)^{2} \\
& =(-3),-3)(-3)-(-5)(-5) \\
& =-27-25 \\
& =-52
\end{aligned}
$$

Ex. 3 Write as single power.
a) $\left(2^{3}\right)\left(2^{4}\right)$

$$
\begin{aligned}
& =2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \\
& =2^{7}
\end{aligned}
$$

b) $\left(5^{4}\right)\left(5^{3}\right)$

$$
=5^{7}
$$

Multiplying Powers

To multiply powers with the same base, add the exponents.

The Product Rule
$m^{a} \times m^{b}=m^{a+b}$
c) $(-2)^{5}(-2)^{4}$

$$
=(-2)^{6}
$$

Ex. 4 Write as a single power.
a) $4^{5} \div 4^{2}=\frac{4 \cdot 4 \cdot 4 \cdot 4 \cdot 4}{4 x \cdot 4}$

$$
=4^{3}
$$

$$
\left\{\begin{aligned}
\frac{4^{5}}{42} & =4^{5-2} \\
& =4^{3}
\end{aligned}\right.
$$

Dividing Powers

To divide powers with the same base, subtract the exponents.

The Quotient Rule

$$
m^{a} \div m^{b}=m^{a-b}, \quad m \neq 0
$$

b) $\frac{3^{4}}{3}=\frac{3 \cdot 3 \cdot 3 \cdot 3}{3}$
$=3^{3} \quad\left\{\begin{aligned} \frac{3^{4}}{3} & =3^{4-1} \\ & =3^{3}\end{aligned}\right.$
c) $\frac{(-2)^{4}}{(-2)^{3}}=(-2)^{4-3}$
d) $\frac{1.5^{16}}{\left(1.5^{2}\right)\left(1.5^{3}\right)}$
$=\frac{1.5^{16}}{1.5^{5}}$
$=1.5^{16-5}$
$=1.5^{11}$

Ex. 5 Simplify.
a) $\left(2^{2}\right)^{4}$

$$
\begin{aligned}
& =\left(2^{2}\right)\left(2^{2}\right)\left(2^{3}\right)\left(2^{2}\right) \\
& =2^{2+2+2+2} \\
& =2^{8} \\
& \left(3^{4}\right)^{5} \\
& =3^{4 \times 5} \\
& =3^{20}
\end{aligned} \quad\left\{\begin{array}{l}
\left(2^{2}\right)^{4} \\
=2^{2 \times 4} \\
=2^{8}
\end{array}\right.
$$

b) $\left(3^{4}\right)^{5}$
c) $-\left(5^{3}\right)^{2}$

$$
\begin{aligned}
& =-\left(5^{3}\right)\left(5^{3}\right) \\
& =-5^{6}
\end{aligned}
$$

Raising a Power to an Exponent

To raise a power to another exponent, multiply the exponents without changing the base.

Power of a Power Rule

- $\quad\left(m^{a}\right)^{b}=m^{a \times b}$

Exponent Laws

Multiply powers
$2^{3} \cdot 2^{4}$
Divide powers
$2^{6} \div 2^{2}$
$=2^{3+4}$
$=2^{7}$

$$
\begin{aligned}
& =2^{6-2} \\
& =2^{8}
\end{aligned}
$$

$\stackrel{\rightharpoonup}{ }$ add exponents
\leftrightarrows subtract exponents

Ex. 6 Simplify
a) $6^{3}-2 \cdot 5^{2}-(1+2)^{3}$

$$
=216-2.25-(3)^{3}
$$

$$
=216-50-27
$$

$$
=139
$$

(2) Keep as a base of 2
b) $\quad \frac{\left(2^{2}\right)^{3} \bullet\left(2^{3}\right)^{4}}{\left(2^{4}\right)\left(2^{5}\right)}-2^{9}$
$=\frac{2^{6} \cdot 2^{12}}{2^{9}}-2^{9}$
$=\frac{2^{18}}{2^{9}}-2^{9}$
$=2^{9}-2^{9}$
$=0$

