1.4 Representing and Comparing Fractions

A \& W Burgers
Ex. 1 Represent each unit fraction using the given model.
a) $\frac{1}{2}$

c) $\frac{1}{6}$
d) $\frac{1}{3}$

b) $\frac{1}{4}$

NOTE: The smaller denominator
means a bigger fraction

When comparing unit fractions, how can you tell without modeling, which one is bigger?

Smallest \rightarrow biggest
Ex. 2 Order these fractions from least to greatest.

$$
\begin{array}{r}
\frac{1}{5} \cdot \frac{1}{9}, \frac{1}{2}, \frac{1}{6}, \frac{1}{14} \cdot \frac{1}{3}, \frac{1}{10} \\
\frac{1}{14} \cdot \frac{1}{10}, \frac{1}{9}, \frac{1}{6}, \frac{1}{5}, \frac{1}{3}, \frac{1}{2}
\end{array}
$$

Ex. 3 Determine the value of each of the following.
a) $\begin{array}{r}\frac{1}{4} \\ =\frac{1}{4} \cdot \frac{72}{1}\end{array}$
$=\frac{1 \cdot 72}{4 \cdot 1}$
"of" means
b) $\quad \frac{1}{6}$ of 342
multiply

$$
=\frac{342}{6}
$$

$=\frac{72}{4}$
$=57$
$=18$

Ex. 4 Represent each of the fractions using the given model.
a) $2 \frac{3}{4} \quad$ (bar model)
b) $1 \frac{2}{3} \quad$ (circle model)

Ex. 5 Determine which fraction is bigger using a visual model.
a)
b) $\frac{2}{3}$ or $\frac{5}{6}$

Ex. 6 Determine which fraction is bigger by comparing denominators
a) ${\underset{\sim}{5}}_{5}^{2}$ or $\frac{2}{7}$
b) $\left(\frac{5}{18}\right)_{\substack{\text { Bigar } \\ \text { pieces }}}$ or $\frac{5}{23}$

Ex. 7 Determine which fraction is bigger by comparing numerators
a)

$$
\left(\frac{5}{18}\right) \text { or } \frac{3}{18}
$$

b) $\frac{-7}{12}$ or $\frac{-11}{12}$

Ex. 8 Determine an equivalent fraction in lowest terms.
a) $\frac{14}{28} \div 14$
b) $\frac{35 \div 5}{15 \div 5}$
c) $\frac{4}{-10 \div 2} \div 2=\frac{2}{-5}$ c

$$
=\frac{1}{2}
$$

$$
=\frac{7}{3}
$$

$$
=-\frac{2}{5}
$$

Ex. 9 Determine an equivalent fraction.
a) $\frac{2}{3} \times 2$
b) $\frac{-7}{8} \times 2$
$=\frac{4}{6}, \frac{6}{9}, \frac{8}{12}$,
$=-\frac{14}{16},-\frac{21}{24}, \ldots$

Ex. 10 Use equivalent fractions to determine whether a less than (<) or greater than ($>$) sign makes the statement true.
(**get a common numerator OR common denominator)
a) $\frac{21}{35} \underset{7 \times 3}{7 \times 3}$ Ø $\frac{5}{7} \times 5 \frac{5}{35}$
b) $\frac{17}{9}$ $\frac{11}{5}$

greater

$$
\frac{-35}{20} \text { C) } \underset{5 \times 4}{5 \times-7} \text { (} D \frac{-12}{5} \times 4 \times 4
$$

Ex. 11 Write each improper fraction as a mixed number.
a)? $\left(\frac{21}{8} \quad 21-8\right.$
b) $\frac{-33}{8} \mathrm{y}$
4 of them!
$4 \times 8=32$
c)
$\frac{-7}{-5}=\frac{7}{5}$
one of
them!
$=1 \frac{13}{8} 9 ? \frac{13}{13-8}=-4 \frac{1}{8}$
$=2 \frac{5}{8}$

Ex. 12 Write each mixed number as an improper fraction.
a) $3 \frac{1}{4} \quad 3 \times 4=12$
b) $-5 \frac{3}{5}=-\frac{28}{5}$
$5 \times 5=25$
$=\frac{12}{4}+\frac{1}{4}$
$=\frac{13}{4}$

