1.3 Number Sets, Density and Limits

History of Zero - Kyne Santos

Ex. 1 State all sets (N,W,Z,Q, Q' or P) that each number belongs to.
a) $5 \mathrm{~N} Z \mathrm{WQ}$
b) 0
WZQ
c) $-3 Z Q$
d) 5.8e) -6.7

f) $4.15151515 \ldots$
g) $\frac{-7}{10}$

h) $0.22222 \ldots$
k) $\sqrt{2}$ and π
$=0 . \overline{2}$

Ex. 2 Label the Venn Diagram to show the relationship between the number sets.

Rational Numbers (Q)

- can be written as a fraction
- includes repeating decimals
- includes terminating decimals

Ex. 3 Write the following terminating decimals as fractions.

Rounding

1,000.12345
a) 0.7
b) -0.75
c) 0.125
d) 4.57
column of
$=\frac{7}{10}$
$=-\frac{75}{100} \div 25$
$=\frac{125}{1000 \div 125} \div 125$
$=\frac{1}{8}$
$=4 \frac{57}{100}$
our last
digit
$=-\frac{3}{4}$
g) 0.000000023
$=-12 \frac{6}{10}$
f) -8.4213789
$=\frac{23}{1000,000,000}$

Ex. 4 Write the following repeating decimals as fractions.

Notice anything?

a) $0.7777 \ldots$
b) $-0.33 \ldots$
c) $8.66 \ldots$
$=0 . \overline{7}$
$=-0 . \overline{3}$
$=8 . \overline{6}$
$=\frac{7}{9}$
$=-\frac{3}{9} \div 3$
$=-\frac{1}{3}$
e) $10.02360236 \ldots$
d) $-32.1818 \ldots$
$=10.0236$
$=-32 . \overline{18}$
$=10 \frac{236}{9999}$
$=-32 \frac{18}{99 \div 9} \div 9$

$$
\begin{aligned}
& =8 \frac{6}{9} \\
& =8 \frac{2}{3}
\end{aligned}
$$

$$
=-32 \frac{2}{11}
$$

Limit Property

- When a sequence or pattern of numbers gets closer and closer to a single number. That number is called the limit.

Ex. 5 Find the limit for each sequence (if it exists)

a) $8.1,8.01,8.001,8.0001,8.00001,8.000001, \ldots$
b) $\quad 4.7,4.77,4.777,4.7777, \ldots$
$4 . \overline{7}$
c) $-12.65,-12.6565,-12,656565,-12.65656565, \ldots-12 . \overline{65}$
d) $2,4,8,16,32,64, \ldots$

e) $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots \frac{1}{\text { HUGE \# }}$
f) $1,4,9,16,25,36, \ldots$

NO

$$
\div 2 \div 3
$$

g) $32 \underset{\sim}{16,8,4,2} \underset{\sim}{\sim}, \ldots$

$$
\begin{array}{r}
\underset{=2}{2,10,0,4,2, \ldots} \left\lvert\,, \frac{1}{2}\right., \frac{1}{4}, \frac{1}{8} \cdot \frac{1}{16} \\
\frac{1}{\text { HUGE } \mp} \operatorname{Linit} \theta
\end{array}
$$

