1.1 Integers

Number sets:

-a set of numbers that share certain characteristics
-written in set notation, curly brackets \{ \}, with commas between the numbers
-when sets are infinite we show the pattern and use
"..." to show that the pattern continues

Ex. 1 Identify whether the sets are finite or infinte:
a) $\{1,2,3,4\}$ Finite
b) $\{1,2,3,4, \ldots\} \ln$ finite
c) $\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots\right\} \ln f$
d) $\{\ldots, 3,2,1\}$ lnf
e) $\{1,2,3,5,8,13,21\}$ Finite
f) $\{1,4,9,16, \ldots\} \backslash \operatorname{lnf}$.

1.1 Integers Blank.notebook

Number Sets in Mathematics

-some commonly used sets of numbers in math are given specific labels (capital letters) to make it easier to refer to

Ex. 2 Match each symbol to the description of the set (which one do you think goes with each?).

Operations with Integers

Imagine that you have a cauldron (pot) of liquid.
You can add red squares to the pot which will increase the temperature. (temperature goes up...hotter)

You can add blue squares to the pot which will decrease the temperature. (temperature goes down...colder)

1.1 Integers Blank.notebook

Ex. 3

If there are TWO SIGNS beside each other...
Ex. 4
a) $(-2)+(-3)$
b) $5 \mp(-7)$
$=-2-3$
$=5-7$
$=-5$
$=-2$
c) $2 \in(-5)$
$=2+5$
$=7$
d) $(-3)=(4)$

$$
\begin{aligned}
& =-3+4 \\
& =1
\end{aligned}
$$

then SIMPLIFY

$$
\text { e) } \begin{aligned}
& ++ \\
= & -(-1-1) \\
= & -3+1 \\
= & -2
\end{aligned}
$$

$+$
f) $(-3)-1$

$$
\pm+3-1 \text { C }
$$

$$
=3-1
$$

$$
=2
$$

$$
\begin{aligned}
& \text { Note: Communication (C) } \\
& \text { - Must have equal signs } \\
& \text { - Avoid --3 } \\
& \text { - Always final answer } \\
& \text { ex: (2) } \Rightarrow 2
\end{aligned}
$$

Multiplication of Integers

Conclusions

$$
\begin{array}{llll}
(+)(+) & (-)(-) & (+)(-) & (-)(+) \\
=+ & =+ & =- & =-
\end{array}
$$

When multiplying or dividing integers

- same signs give a Positive answer
- different signs give a Negative answer

1.1 Integers Blank.notebook

Ex. 5 Evaluate.
a) $(2)(-6)$
$=-12$
b) $-(-4)$ $\Rightarrow+4$ (c)
$=4$
c) $(-24) \div(-8)$
$=3$
d) $(-2)(-3)(-4)$
$=6(-4)$
$=-24$
e) $\frac{-36}{-3}$
f) $0 \div 8 \quad \frac{0}{8}$
$=0$
$=12$
g) $12 \div 0 \quad \frac{12}{0}$
= Undafined!

Ex. 6
The average temperature in Ottawa in July is $29^{\circ} \mathrm{C}$.
The average temperature in Ottawa in January is $-17^{\circ} \mathrm{C}$.
Write and evaluate an expression to show the difference between the average temperature in July and January.

$$
=29+17
$$

$$
=46
$$

