1.3 HOMEWORK HANDOUT: NUMBER SETS

PART A				
1) List the set or set	s to which each number b	elongs ($\mathbb{N}, \mathbb{W}, \mathbb{Z}, \mathbb{Q}, \mathbb{R},$	\mathbb{Q}').	
a) $\sqrt{47}$	b) $\frac{14}{2}$	c) -66	d) $\frac{2}{7}$	
e) 3.7	f) π^2	g) $-\sqrt{4}$	h) $\sqrt{2}$	
2) State the numbe	r of elements (or members	s) in each set.		
a) {blue, green	, red, yellow} b) {a,t	o,c,d,e,f,g} c) {	Ontario, Alberta, M	anitoba}
d) {2,5,6,8,10	e) $\{-9, -8, -7\}$ f)	$\{0,1\}$ g) $\{0\}$ 1	n) $\{1, 2, 3, 4, 5,\}$	i) { }
3) Explain why the	set {7,9,12} is a subset of	f the set {5,6,7,8,9,1	0,11,12}.	
4) Explain why the	set {0,1,4,9,16} is not a s	subset of the set $\{1, 2, $	3,4,5,}.	
5) Match each pare	ent set on the left with its c	corresponding subset	on the right.	
a) {-8,-7,-	-6, -5, -4, -3, -2, -1}	i) {1,3,5,7,9	}	
b) $\{-8, -6, -6\}$	-4, -2, 0, 2, 4, 6, 8, }	ii) {-13}		

a) {-8,-7,-6,-5,-4,-3,-2,-1}	i) {1,3,5,7,9}
b) $\{-8, -6, -4, -2, 0, 2, 4, 6, 8,\}$	ii) {-13}
c) $\{1, 2, 3, 4, 5\}$	iii) {0,2,4,6,8,}
d) $\{,-9,-7,-5,-3,-1\}$	iv) {-1,-2,-3}

6) Express the following sets in braces, { }.

- a) The set of natural numbers less than 10.
- b) The set of odd integers from -5 to 5.
- c) The set of all whole numbers.
- d) The set of all integers.
- e) The set of all even whole numbers greater than or equal to 20.
- f) The set of all integers that are multiples of 5.
- 7) State three numbers between 0 and 1.
- 8) State four rational numbers between 3 and 4.

PART B

- 9) List all of the subsets of the set $\{1, 2\}$.
- 10) List all of the subsets of the set $\{-1,0,1\}$.

- 11) Identify each of the following statements as true or false.
 - a) The set of whole numbers is a subset of the set of real numbers.
 - b) The set of natural numbers is a subset of the set of integers.
 - c) The set of whole numbers is a subset of the set of natural numbers.
 - d) The set of rational numbers is a subset of the set of real numbers.
 - e) The set of irrational numbers is a subset of the set of rational numbers.
 - f) The set of integers is a subset of the set of rational numbers.
 - g) $\{2,3,\pi\}$ is a subset of the rational numbers.
- 12) Jonah stated that subsets always have fewer elements than their parent sets. Is Jonah's claim correct? Explain.

- 13) The set of real numbers and its subsets are often represented using the symbols shown on the right. Describe how each of the following pairs of sets are related.
 - a) \mathbb{N} and \mathbb{W}
 - b) \mathbb{W} and \mathbb{Z}
 - c) \mathbb{Z} and \mathbb{Q}
 - d) \mathbb{Q} and \mathbb{P}

Set	Symbol	
Natural Numbers	N	
Whole Numbers	W	
Integers	\mathbb{Z}	
Rational Numbers	Q	
Irrational Numbers	\mathbb{P} or \mathbb{Q}' or $\mathbb{R} \setminus \mathbb{Q}$	
Real Numbers	\mathbb{R}	

- 14) If set *B* is a subset of set *A*, and set *C* is a subset of set *B*, is set *C* a subset of set *A*. Explain.
- 15) a) How many natural numbers are there from 1 through 10?
 - b) How many whole numbers are there from 0 through 10?
 - c) How many rational numbers are there from 1 through 10?
 - d) How many irrational numbers are there from 1 through 10?
 - e) How many real numbers are there from 1 through 10?
- 16) Which of the following sets have the density property?
 - natural numbers
- whole numbers

• integers

- rational numbers
- irrational numbers
- real numbers
- 17) Does the set of even integers have the density property? Explain.
- 18) The following sequences of numbers each have a *limit*. That is, they gradually get closer and closer to a specific number, called the *limit*. Identify the limit of each of the following sequences.
 - a) 7.1,7.01,7.001,7.0001,... b) $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$, $\frac{1}{6}$,... c) $\frac{5}{1}$, $\frac{5}{4}$, $\frac{5}{9}$, $\frac{5}{16}$, $\frac{5}{25}$,...
 - d) 0.3, 0.33, 0.333, 0.333, ... e) -2.6, -2.666, -2.6666, ... f) 1.4, 1.44, 1.444, 1.4444, ...

PART C

- 19) The symbol \subseteq is often used to denote a subset. For example, if set *P* is a subset of set *Q*, we would write $P \subseteq Q$. If $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $B = \{2, 4, 6, 8\}$ and $C = \{4, 8\}$, indicate whether each of the following statements is true or false.
 - a) $A \subseteq B$ b) $B \subseteq A$ c) $C \subseteq B$ d) $C \subseteq A$ e) $B \subseteq C$
- 20) There is a relationship between the number of elements in a set and the number of possible subsets.
 - a) Determine the total number of possible subsets for the set $\{1, 2, 3\}$.
 - b) Determine the total number of possible subsets for the set $\{1, 2, 3, 4\}$.
 - c) Hypothesize a rule for finding the number of subsets for a set containing n elements.
 - d) Use your hypothesis to predict the number of subsets for a set with 12 elements.
- 21) Consider the set $\left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots\right\}$.
 - a) Describe how the sequence of numbers in this set is constructed.
 - b) Does this set have the density property? Explain.
 - c) Does the sequence in this set have a limit? If so, what is the limit? If the sequence does not have a limit, explain why not.
- 22) Determine the limit of each sequence.
 - a) 0.2, 0.25, 0.252, 0.2525, ... b) 3.128, 3.128128, 3.128128128, ...

c)
$$\sqrt{2}, \sqrt{2 \times \sqrt{2}}, \sqrt{2 \times \sqrt{2 \times \sqrt{2}}}, \sqrt{2 \times \sqrt{2 \times \sqrt{2} \times \sqrt{2}}}, \dots$$

ANSWERS

1) a) \mathbb{Q},\mathbb{R} b) $\mathbb{N},\mathbb{W},\mathbb{Z},\mathbb{Q},\mathbb{R}$ c) $\mathbb{Z},\mathbb{Q},\mathbb{R}$ d) \mathbb{Q},\mathbb{R} e) \mathbb{Q},\mathbb{R} f) \mathbb{P} or \mathbb{Q}' g) $\mathbb{Z},\mathbb{Q},\mathbb{R}$ h) \mathbb{P} or \mathbb{Q}'

- **2)** a) 4 b) 7 c) 3 d) 5 e) 3 f) 2 g) 1 h) infinite i) 0
- **3**) All of the elements of the set $\{7,9,12\}$ are contained in the set $\{5,6,7,8,9,10,11,12\}$. Therefore, the set $\{7,9,12\}$ is a subset of the set $\{5,6,7,8,9,10,11,12\}$.
- 4) Not all of the elements of the set {0,1,4,9,16} are contained in the set {1,2,3,4,5,...}. Specifically, 0 is an member of the first set, but not the second. Therefore, the set {0,1,4,9,16} is not a subset of the set {1,2,3,4,5,...}.

6) a) $\{1,2,3,4,5,6,7,8,9\}$ b) $\{-5,-3,-1,1,3,5\}$ c) $\{0,1,2,3,4,5,...\}$ d) $\{...,-3,-2,-1,0,1,2,3,...\}$ e) $\{20,22,24,26,28,...\}$ f) $\{...,-15,-10,-5,0,5,10,15,...\}$

7) Answers will vary. For example, ¹/₂, ²/₃, 0.2.
8) Answers will vary. For example, 3¹/₄, ²⁹/₈, 3.5, 3.75.
9) { }, {1}, {2}, {1,2}
10) { }, {-1}, {0}, {1}, {-1,0}, {-1,1}, {0,1}, {-1,0,1}
11) a) true b) true c) false d) true e) false f) true g) false

- 12) Jonah's claim is incorrect. A subset may have the same number of elements as its parent set. For example the parent set {1,2,3} and its subset {1,2,3} have the same number of members. (Note: A *proper subset* is a subset that is not equal to its parent set. A *proper subset* always has fewer elements than its parent set. No set is a *proper subset* of itself.)
- 13) a) Adding the element 0 to the set of natural numbers (\mathbb{N}) gives the set of whole numbers

(W). N is a subset of W. b) W is a subset of Z. c) Z is a subset of Q. d) The

rational numbers (Q) consist of all numbers of the form $\frac{a}{b}$, whereas the irrational numbers

 (\mathbb{P}) are all of the real numbers that cannot be expressed in that form. \mathbb{Q} and \mathbb{P} have no

elements in common (they are *disjoint sets*).

- 14) Yes. Since *C* is a subset of *B*, all of the elements of *C* are contained in *B*. Since *B* is a subset of *A*, all of the elements of *B* are contained in *A*, and thus all of the elements of *C* are also contained in *A*. Therefore, *C* is a subset of *A*.
- **15)** a) 10 b) 11 c) infinitely many d) infinitely many e) infinitely many
- 16) rational numbers, irrational numbers and real numbers
- **17)** No. For example, there are no other even integers between 2 and 4.

18) a) 7 b) 0 c) 0 d)
$$\frac{1}{3}$$
 e) $-2\frac{2}{3}\left(\text{or }-\frac{8}{3}\right)$ f) $1\frac{4}{9}\left(\text{or }\frac{13}{9}\right)$

- **19)** a) false b) true c) true d) true e) false
- **20)** a) 8 b) 16 c) The total number of subsets is equal to 2^n . d) 4096
- **21**) a) The sequence starts with 1 and then each successive term is found by dividing the previous term by 2.

b) No. For example, 1 and $\frac{1}{2}$ are both members of the set, but there is no other member of

the set that falls between these two values since they are all less than $\frac{1}{2}$.

c) The sequence has a limit of 0.

22) a)
$$\frac{25}{99}$$
 b) $\frac{3125}{999}$ c) 2