STATION $\mathrm{F}_{\text {(stranas) }}$

1. Complete the table.

Annual Interest Rate (\%)	Number of Years	Compounding Period (in words)	n	i (approx. to 4 decimal places)
4.0%	7	monthly		
	18		72	0.0035
8.5%		semi-monthly	36	

2. Elizabeth borrows $\$ \mathbf{2 8 0 0}$ for 12 years at a fixed rate of simple interest. At the end of that time, she owes $\$ 8000$. What interest rate is she being charged?
3. Given the TVM solver screen below, describe a scenario (point form) that applies to the values.
```
    N=60
    I%=6.4
    PV=-1500
- PMT=-45.15
    FV=20000
    P/Y=2
C/Y=2
PMT: END
```


STATION $I_{\text {Brymand }}$

1. Tom wants to invest money every month for 30 years at 12.8\%/a compounded monthly. He would like to have $\$ 100000000$ at the end of the 30 years. How much does he need to invest each month?
2. Karsh has $\$ 5000$ to invest now. He is hoping to find an investment that would allow him to have $\$ 16000$ in 10 years. At what annual rate, compounded semi-annually, will he need to invest at in order to achieve his goal?
3. Ahmed wants to invest some money at 10.5\%/a compounded annually. He would like the investment to provide $\$ 1000$ for scholarships at his old high school, WCSS, at the end of each year, for the next 25 years. How much would Ahmed need to invest now?

STATION $N_{1 \text { (symaxs) }}$

Kelsey invests $\$ 1800$ into an account paying 5.3\%/a compounded bi-weekly for 2 years. At the end of two years, she will re-invest her money, plus an additional amount, into a second investment that pays $8.2 \% /$ compounded monthly for 4 more years. If she wants to have $\$ 9500$ at the end of the 6 years of investing, how much will she need to add to her investment at the end of 2 years?

1. Complete the table for annuities.

Payment (\$)	Annual Interest Rate	Number of Years	Total Number of Payments	Compounding Period	Total Amount $(\$)$
100	3.5%	8		monthly	
	5.2%	6	156		2400

2. Lauryn borrows $\$ 10000$ as start-up capital for her new business. She plans to repay the loan in 4 years, at which point she will owe $\$ 15185$. What rate of interest is Lauryn being charged, assuming that it is compounded semiannually?

STATION $\mathrm{N}_{2 \text { (sompingestel) }}$

1. Musa has saved $\$ 6500$ by working part-time. He is going to invest his money in an account paying 6\%/a compounded daily. How long will it take for his money to double?
2. Jordyn has won the CASH for LIFE lottery and will receive $\$ 1000$ every week for the next 30 years. How much does the Ontario Lottery Corporation need to invest today at 9.8\%/a compounded weekly to pay for this prize?
3. At the end of every month, Malcolm deposits $\$ 100$ in an account that pays 6.3\%/a, compounded monthly. Determine the amount in the account after 4 years.

STATION C Isponirgsatas)

1. Bryn borrows $\$ 150000$ to start up a company. He can afford to make monthly payments between $\$ 1500$ and $\$ 2000$ at $3.8 \% /$ a compounded monthly. How much sooner, in months, can he pay off the loan if he makes the maximum payment?
2. Yasmeen buys a house for $\$ 350$ 000. She has a down payment of $\$ 50000$.
a) Determine Yasmeen's regular monthly payments if her mortgage is amortized over 25 years at 4.2\%/a.
b) Assuming her rate stays the same and she continues to make monthly payments, how much interest will Yasmeen pay on her mortgage?

STATION E (saminis cald

Paige took out a $\$ 480000$ mortgage at $5.4 \% /$ for a fixed 3 -year term amortized over 25 years. After the 3 years were up, she shopped around at various banks and found a lower interest rate of 3.4\%/a and renewed her mortgage for a fixed 5 -year term. She decided to continue making the same monthly payment as before.

Eight years after buying her new house, Paige gets a promotion. With her bonus and raise, she can now afford to pay off part of her mortgage with a lump sum of $\$ 4000$ and adds $\$ 200$ to her regular payments. By how much has Paige shortened her amortization period?

