MCR 3U Functions and Relations Final Examination
 (January)
 PART A (21 marks)

Each correct answer has a value of one (1) mark.

1. Given $g(x)=3-2 x$, determine $g(4 x)$.

For the relation defined by $\frac{x^{2}}{49}+\frac{y^{2}}{16}=1$:
(a) identify the type of conic \qquad
(b) state the range
(c) state the length of the major axis
\qquad
\qquad
3. State all restrictions: $\frac{2}{x} \div \frac{x+2}{3}$
4. Evaluate: (express your answers as fractions)
(a) $16^{-\frac{3}{4}}$
(b) $\quad 3^{-1}+3^{0}$ \qquad
5. Describe the transformations required to obtain the graph of

$$
y=-f(x+3) \text { from a graph of a function defined by } y=f(x)
$$

(a)
(b)
6. Given the recursion formula defined by
$t_{1}=-3, t_{2}=5, t_{n}=t_{n-2}-t_{n-1}$, determine t_{3}.

State the conjugate of $-2+3 i$.
State the equation of one asymptote for the graph of $x^{2}-y^{2}=1$. \qquad

State the equation for the locus of points which are 5 units from $(-1,0)$. \qquad
3 3pie/4=135 degrees
State the exact value of $\cos \frac{3 \pi}{4}$.
11. θ is the measure of an angle with its terminal arm in the fourth quadrant such that $\cos \theta=0.423$. Determine the value of θ to the nearest degree, $0^{\circ} \leq \theta \leq 360^{\circ}$.
12. The first term of a sequence is -5 and the common ratio is 2 .
(a) List the first three terms of this sequence.
(b) State the general term. \qquad
Simplify: $\frac{x^{\frac{3}{4}}}{x^{\frac{1}{4}}}$ \qquad

For what value of c does the equation of the function defined by $y=x^{2}-6 x+c$ have only one x - intercept? \qquad
16. Determine the number of zeroes of the function defined by

$$
f(x)=-3(x-2)^{2}-5
$$

PART B (61 marks)

Each of the following questions requires a short answer completion in the space provided. Show all work. Mark values for each question appear in the left margin.

Simplify:

$$
(3-4 i)^{2}-i\left(i^{3}\right)+\frac{2}{i}
$$

2. A graphing calculator shows the following for a sine function with a period of 2π.

A student wrote the equation as $y=2 \sin \left(x-\frac{\pi}{6}\right)+3$.
Explain in words why the student is incorrect.

[1] (b) Write the correct equation.
3. Simplify. (It is not necessary to state restrictions)
(a) $\frac{x}{3 x-6}-\frac{2}{x^{2}-4}$
(b) $\frac{2 x+y}{2 x^{2}} \div \frac{2 x^{2}+3 x y+y^{2}}{x^{2}+x y}$
4. Sketch $y=3 \cos \left(\frac{1}{2} x\right)+1$ for one cycle.

5. Prove the identity:
$\frac{\tan ^{2} \theta}{1+\tan ^{2} \theta}=\sin ^{2} \theta$
6. Solve for θ :

$$
\begin{equation*}
\text { 2pie }=360 \text { degrees } \tag{3}
\end{equation*}
$$

$2 \sin \theta+1=0,0 \leq \theta \leq 2 \pi$
5 $4 \tan ^{2} \theta-9=0,0^{\circ} \leq \theta \leq 360^{\circ}$ (answer to the nearest degree)
7. Given the relation f as defined by $y=\sqrt{x-2}$,
[2] (a) state the domain and the range of f.
[2] (b) sketch the graphs of f and f^{-1}.
[1] (c) does f represent a function? Explain your answer.
[2] (d) determine the expression for $f^{-1}(x)$.

[4] 8. Solve for x :
$\left(2^{x}\right)^{2}=64\left(\frac{1}{32^{x}}\right)$
9. A sporting goods store sells skates. During the first week, they sold 10 pairs of skates. In the second week they sold 14 pairs and in the third week they sold 18 pairs, and the pattern continues.
[1] (a) Identify the type of sequence. Explain.
[4] (b) How many weeks did it take to sell a total of 1450 pairs of skates? (Use the appropriate formula.)
10. Determine the length of PQ , to the nearest metre.

11. Because of the tide, the depth of the water in a harbour is modelled by the equation $d=-3 \cos \left(\frac{\pi}{6} t\right)+6$, where d represents the depth of the water in metres and t represents the number of hours after midnight. (i.e. $t=0$ means midnight,
$t=1$ means 1 A.M., and so on.)
The graph of the relation is shown below:

[2] (a) What is the missing coordinate of point A? What do the coordinates of point A represent?
[1] (b) State the maximum depth of the water.
[2] (c) Surfing is allowed between 8 A.M. (08:00 hrs) and 7 P.M. (19:00 hrs), but only when the depth of the water is 6 m or more. For how many hours is surfing allowed in one day? Explain.
(a) Express $9 x^{2}-4 y^{2}-36 x-8 y=4$ in standard form.
(b) What are two advantages of writing the defining equation of a conic in standard form?

The receiver of a parabolic satellite dish is at the focus. The focus is 72 cm from the vertex. If the dish is 240 cm in diameter, find the depth of the dish.

A hyperbola has centre $(2,-1)$ and one of its foci at $(2,4)$. Its transverse axis has a length of 8 units Sketch the graph of the hyperbola.

OTTAWA-CARLETON DISTRICTSCHOOL BOARD

MCR 3U Functions and Relations Final Examination
(January)
page 1 of 8
PART A (21 marks)
Write only your answer for each of the following questions in the space provided. teacher use only

1. Given $g(x)=3-2 x$, determine $g(4 x)$.

$$
3-8 x
$$

2. For the relation defined by $\frac{x^{2}}{49}+\frac{y^{2}}{16}=1$:
(a) identify the type of \qquad conic
(b) state the range
(c) state the length of the

3. State all restrictions: $\frac{2}{x} \div \frac{x+2}{3}$

$$
x \neq 0, x \neq-2
$$

4. Evaluate: (express your answers as fractions)
(a) $16^{-\frac{3}{4}}$

(b) $3^{-1}+3^{0}$
$\frac{4}{3}$
5. Describe the transformations required to obtain the graph of $y=-f(x+3)$ from a graph of a function defined by $y=f(x)$.
(a) translation 3 units leff
(b) reflection in x-akis
6. Given the recursion formula defined by $t_{1}=-3, t_{2}=5, t_{n}=t_{n-2}-t_{n-1}$, determine t_{3}.
7. Determine the product of $-2+3 i$ and its conjugate. state the conjugate
8. State the equation of one asymptote for the graph of
$x^{2}-y^{2}=1$
\qquad

$$
\begin{aligned}
& -2-3 i \\
& y=x \text { or } y=-x
\end{aligned}
$$

9. State the equation for the locus of points which are 5 units from ($-1,0$).

$$
(x+1)^{2}+y^{2}=25
$$

\qquad
\qquad

OTTAWA-CARLETON DISTRICT SCHOOL BOARD MCR 3U Functions and Relations Final Examination

page 2 of 8
teacher
use only
10. State the exact value of $\cos \frac{3 \pi}{4}$.

$$
-\frac{1}{\sqrt{2}}
$$

11. θ is the measure of an angle with its terminal arm in the fourth quadrant such that $\cos \theta=0.423$. Determine the value of θ to the nearest degree, $0^{\circ} \leq \theta \leq 360^{\circ}$.

$$
295^{\circ}
$$

12. The first term of a sequence is -5 and the common ratio is 2 .
(a) List the first three terms of this sequence.

$$
-5,-10,-20
$$

$$
t_{n}=-5(2)^{n-1}
$$

(b) State the general term.
13. Simplify:

$x^{\frac{1}{2}}$
14. Determine the value of $\sin \theta$.

$$
\frac{\frac{5}{\sqrt{34}}}{\text { accept } \sim 0.8575 \ldots}
$$

15. For what value of c does the equation of the function defined by $y=x^{2}-6 x+c$ have only one x - intercept? \qquad
16. Determine the number of zeroes of the function defined by $f(x)=-3(x-2)^{2}-5$.
0
\qquad
\qquad

OTTAWA-CARLETON DISTRICT SCHOOL BOARD MCR 3U Functions and Relations Final Examination

PART B (60 marks)
Each of the following questions requires a short answer completion in the space provided. Show teacher all work. Mark values for each question appear in the left margin.

1. Simplify: $\quad(3-4 i)^{2}-i\left(i^{3}\right)+\frac{2}{i}$

$$
\begin{aligned}
& =9-24 i-16-1-2 i \\
& =-8-26 i
\end{aligned}
$$

2. A graphing calculator shows the following for a sine function with a period of 2π. A student wrote the equation as $y=2 \sin \left(x-\frac{\pi}{6}\right)+3$.
(a) Explain in words why the student is incorrect.

$$
\begin{array}{r}
\therefore \text { The argument of } \\
\text { be }\left(x+\frac{\pi}{6}\right)
\end{array}
$$

(b) Write the correct equation.

[1]

$$
y=2 \sin \left(x+\frac{\pi}{6}\right)+3
$$

3. Simplify. (It is not necessary to state restrictions)
(a) $\frac{x}{3 x-6}-\frac{2}{x^{2}-4}$
[3]

$$
=\frac{x}{3(x-2)}-\frac{2}{(x-2)(x+2)}
$$

(b) $\quad \frac{2 x+y}{2 x^{2}} \div \frac{2 x^{2}+3 x y+y^{2}}{x^{2}+x y}$
[3]

$$
\begin{aligned}
& =\frac{2 x+y}{2 x^{2}} \cdot \frac{x(x+y)}{(2 x+y)(x+y)} \\
& =\frac{1}{2 x}
\end{aligned}
$$

\qquad
\qquad

PART B (θ marks)

4. Sketch $y=3 \cos \left(\frac{1}{2} x\right)+1$ for one cycle.

5. Prove the identity:
[3] $\frac{\tan ^{2} \theta}{1+\tan ^{2} \theta}=\sin ^{2} \theta$

$$
\begin{aligned}
L S & =\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \cdot \frac{1}{1+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}} \\
& =\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \cdot \frac{1}{\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos ^{2} \theta}}
\end{aligned}
$$

6. Solve for θ :
(a) $2 \sin \theta+1=0,0 \leq \theta \leq 2 \pi$
[3]

$$
\begin{aligned}
& \sin \theta=-\frac{1}{2} \\
& \text { related acute angle } \\
& \text { of } \theta \text { is } \frac{\pi}{6}
\end{aligned}
$$

(b) $4 \tan ^{2} \theta-9=0,0^{\circ} \leq \theta \leq 360^{\circ}$ (answer to the nearest degree)

$$
\tan \theta= \pm \frac{3}{2}
$$

[3]
related acutiangle of θ is approx. 56°

$$
\theta \doteq 56^{\circ}, 124^{\circ}, 236^{\circ}, 304^{\circ} .
$$

7. Given the relation f as defined by $y=\sqrt{x-2}$,
(a) state the domain and the range of f.
[2]

$$
\begin{aligned}
& D=\{x \mid x \in R, x \geq 2\} \\
& R=\{y \mid y \in R, y \geq 0\}
\end{aligned}
$$

(b) sketch the graphs of f and f^{-1}.
[2]

(c) does f represent a function? Explain your answer.
[1]

$$
\text { Yes, since there is only one } y \text {-value for each } x \text {-value }
$$

(d) determine $f^{-1}(x)$.

$$
f^{-1}(x)=x^{2}+2, x \geq 0
$$

8. Solve for x :

$$
\left(2^{x}\right)^{2}=64\left(\frac{1}{32^{x}}\right)
$$

[4]

$$
\begin{aligned}
2^{2 x} & =2^{6}\left(2^{-5 x}\right) \\
2^{2 x} & =2^{6-5 x} \\
2 x & =6-5 x \\
7 x & =6 \\
x & =\frac{6}{7}
\end{aligned}
$$

PART B (60 marks)

9. A sporting goods store sells skates. During the first week, they sold 10 pairs of skates. In the second week they sold 14 pairs and in the third week they sold 18 pairs, and the pattern continues.
(a) Identify the type of sequence. Explain. between successive terms.
(b) How many weeks did it take to sell a total of 1450 pairs of skates? (Use the appropriate
formula.)

$$
\begin{equation*}
a=10, d=4 \tag{4}
\end{equation*}
$$

eq. eq

$$
\begin{aligned}
& \frac{\sin \angle Q}{12}=\frac{\sin 29^{\circ}}{8} \\
& \angle Q \doteq 46.7^{\circ} \\
& \therefore \angle C P Q=46.7^{\circ} \\
& \angle P C Q \doteq 86.7^{\circ} \\
& P Q=\sqrt{8^{2}+8^{2}-2(64) \cos 86.7^{\circ}} \\
& \therefore 11
\end{aligned}
$$

[4]
\qquad
Technical total for page $=$ \qquad

OTTAWA-CARLETON DISTRICT SCHOOL BOARD

PART B (60 marks)
11. Because of the tide, the depth of the water in a harbour is modelled by the equation $d=-3 \cos \left(\frac{\pi}{6} t\right)+6$, where d represents the depth of the water in metres and t represents the number of hours after midnight. (ie. $t=0$ means midnight, $t=1$ means 1 A.M., and so on.)

(a) What is the missing coordinate of point A ? What do the coordinates of point A represent?

$$
\text { A }(3,6) \text { means that the (mean) depth of } 6 \mathrm{~m}
$$

$$
\text { occurs at } 3 \text { Am }
$$

(b) What is the maximum depth of the water?
[1]
$9 m$

(c) Surfing is allowed between 8 A.M. and 7 P.M. when the depth of the water is 6 m or more. For how many hours is surfing allowed in one day? In the ll hour period, the depth is less than 6 m from - 9AM to 3 PM
12. (a) Express $9 x^{2}-4 y^{2}-36 x-8 y=4$ in standard form explanation

$$
9\left(x^{2}-4 x+4\right)-4\left(y^{2}+2 y+1\right)=4+36-4
$$

[3]

$$
\begin{aligned}
& 9(x-2)^{2}-4(y+1)^{2}=36 \\
& \frac{(x-2)^{2}}{4}-\frac{(y+1)^{2}}{9}=1
\end{aligned}
$$

(b) What are two advantages of writing the defining equation of a conic in standard form?
-features of the graph of the relation, like the centre, intercepts, a symptotes are

\qquad
Technical total for page $=$ \qquad

OTTAWA-CARLETON DISTRICT SCHOOL BOARD

MCR 3U Functions and Relations Final Examination

PART B (${ }_{6}^{6}$ marks)
13. The receiver of a parabolic satellite dish is at the focus. The focus is 72 cm from the vertex. If the dish is 240 cm in diameter, find the depth of the dish.

$$
\begin{aligned}
& \text { equation of parabola } \\
& \begin{array}{r}
y^{2}=4 p x, p=72 \\
y^{2}=288 x \\
\text { if } y=120,120^{2}=288 x \\
x=50
\end{array}
\end{aligned}
$$

14. A hyperbola has centre $(2,-1)$ and one of its foci at $(2,4)$. Its transverse axis has a length of 8 units. Sketch the graph of the hyperbola.
[5]

\qquad
Technical total for page $=$ \qquad

Write only your answer for each of the following questions in the space provided.
 Each correct answer has a value of one (1) mark.

1. If $f(x)=5 x^{2}-2$, determine $f(-3)$.
2. For the given periodic relation, state:
\qquad
(a) the period

(b) the amplitude
(c) the value of $f(11)$ assuming the relation continues in the same manner.
3. Evaluate $8^{-\frac{5}{3}}$. (Express answer as a fraction)
4. Given $y=2 \sqrt{x-5}$, state:
(a) the domain
(b) the range
\qquad
\qquad
\qquad
\qquad
\qquad
Express $\sqrt{-25}$ in terms of i.
Evaluate i^{6}.
5. State the restrictions for $\frac{x-3}{x^{2}(x-3)}$.

$$
\text { 5pie } / 6=150 \text { degrees }
$$

8. Given $\theta=\frac{5 \pi}{6}$, state:
(a) the measure of θ in degrees \qquad
(b) the exact value of $\cos \theta$. \qquad
9. y_{\uparrow} Given the diagram below, state the exact measure of α in radians.

10. A point on the graph of $y=f(x)$ is $(8,-3)$. The coordinates of the corresponding image point
(a) on the graph of $y=2 f(x)$ are
(b) on the graph of $y=f(x+2)$ are \qquad
(c) on the graph of $y=f^{-1}(x)$ are \qquad
11. Given the recursion formula defined by $t_{1}=5, t_{n}=2 t_{n-1}-3$, determine t_{2}.

Given the conic defined by $y^{2}=-8 x$, determine:
(a) the coordinates of the focus.
(b) the equation of the directrix.
13. \quad Simplify $a^{\frac{5}{4}} \cdot a^{\frac{3}{4}}$

PART B (67 marks)

Each of the following questions requires a short answer completion in the space provided.

[3] Show all work. Mark values for each question appear in the left margin.
Find the defining equation of the conic whose graph is shown below. Express your answer in standard form.

Simplify $\frac{5+3 i}{4-i}$
3. $\quad \mathrm{P}(-2,-3)$ lies on the terminal arm of the angle in standard position with measure θ. Determine:
[2] (a) the exact value of $\sin \theta$.
[2] (b) the value of θ to the nearest degree, where $0^{\circ} \leq \theta \leq 360^{\circ}$.
[3] 4. Simplify completely: (It is not necessary to state restrictions.)
$\frac{a}{a+3}+\frac{9 a}{3 a^{2}+8 a-3}$
[4] 5. Simplify and state the restrictions
$\frac{2 m+3}{2 m-3} \div \frac{m+3}{9-4 m^{2}}$
[4] 6. An arrow is shot from the roof of a building. Its height above the ground is modelled by $h(t)=-5 t^{2}+40 t+20$, where h is the height in metres and t is the time elapsed in seconds, from the time the arrow was shot. For what length of time is the arrow more than 35 m above the ground? Express your answer to the nearest tenth of a second.
[3] 7. Prove the identity:
$\tan \theta-\frac{1}{\tan \theta}=\frac{2 \sin ^{2} \theta-1}{\sin \theta \cos \theta}$
8. Solve for $\theta: \quad 2$ pie $=360$ degrees
[2] (a) $\tan \theta-\sqrt{3}=0,0 \leq \theta \leq 2 \pi$ (exact values)
[3]
9. If you were given a function in the form $y=f(x)$, explain how you would determine the defining equation of its inverse, namely $y=f^{-1}(x)$.
$3 \cos ^{2} \theta-7 \cos \theta+2=0,0 \leq \theta \leq 2 \pi$ (round answers correct to 2 decimal places)
10. The graph of a parabolic relation is shown.
[1] (a) State the domain.
[1] (b) Graph the inverse on the same grid.
[1] (c) Consider the statement: "Since the given relation is not a function, then its inverse is not a function." Is this statement true? Explain your answer.
[3] 11. Solve for x :

$27^{x-2}=\frac{1}{9^{x}}$
pie/2=90 degrees
[4] 12. Sketch one cycle of the following trigonometric function:

$$
y=-2 \sin \left(3 x+\frac{\pi}{2}\right)
$$

13. Given the series $800+400+200+100+\ldots$, using the appropriate formulas,

Given the conic defined by $25 x^{2}+9 y^{2}-100 x+18 y-116=0$, determine:
(a) the coordinates of the centre
(a) determine t_{12} to 3 decimal places.
(b) determine S_{12} to the nearest decimal place.
14. Two guy wires as shown in the diagram support a microwave tower. What is the height, h metres, of the tower, to the nearest metre?
15. You have the opportunity to work between 1 and 50 hours during the March Break. You can choose the method of payment from the following:

Choice 1: \quad You can be paid $\$ 15$ per hour
Choice 2: You can be paid $\$ 1$ for the first hour, $\$ 2$ for the second hour, $\$ 3$ for the third hour, and the pattern continues.

What are the advantages of each choice? Justify your answers.
16. The inside temperature of a building is modelled by $T(t)=3 \cos (0.262 t)+22$, where T is the temperature in ${ }^{\circ} \mathrm{C}$ and t is the number of hours elapsed since 5 A.M. The graph is shown below.
Using an appropriate calculation, explain why the coefficient of t in the equation is 0.262 .
[2] (b)
In another building, the temperature fluctuates in a similar manner except that the maximum temperature is $27^{\circ} \mathrm{C}$ and the minimum temperature is $23^{\circ} \mathrm{C}$. Determine the defining equation that models the temperature in this other building.
17. A radar screen shows the activity within a circular region of radius 60 km .
(a) Assuming the centre of the screen is $(0,0)$, write the equation that represents this circle.
(b) A small aircraft flies on a path given by the equation $x+2 y=140$. Is this small aircraft detected on the radar screen? Explain your answer algebraically. the coordinates of the foci.

OTTAWA-CARLETON DISTRICT SCHOOL BOARD MCR 3U Functions \& Relations Final Examination

(Backup)
page 1 of 8
PART A (20 marks)

Write only your answer for each of the following questions in the space provided.

Each correct answer has a value of one (1) mark.
teacher use only

1. If $f(x)=5 x^{2}-2$, determine $f(-3)$.
2. For the given periodic relation, state:

(a) the period
(b) the amplitude
43

\qquad
(c) the value of $f(11)$ assuming the relation continues in the same manner. \qquad
3. Evaluate $8^{-\frac{5}{3}}$. (Express answer as a fraction)
$\frac{1}{32}$
4. Given $y=2 \sqrt{x-5}$, state:
5. Express $\sqrt{-25}$ in terms of i.
(a) the domain $\quad\{x \mid x \in R, x \geq 5\}$
(b) the range

6. Evaluate i^{6}.
7. State the restrictions for $\frac{x-3}{x^{2}(x-3)}$.

8. Given $\theta=\frac{5 \pi}{6}$, state:

(a) the measure of θ in
degrees
(b) $\begin{array}{l}\text { the exact value of } \\ \cos \theta .\end{array}$

9. Given the diagram below, state the exact measure of α in radians.

\qquad

OTTAWA-CARLETON DISTRICT SCHOOL BOARD

MCR 3U Functions \& Relations Final Examination

Write only your answer for each of the following questions in the space provided.
10. A point on the graph of $y=f(x)$ is $(8,-3)$. The coordinates of the corresponding image point
(a) on the graph of $y=2 f(x)$ are

$$
(8,-6)
$$

$$
(6,-3)
$$

(b) on the gappof $y=f(x+2)$ are $\quad(6,-3)$
(c) on the graph of $y=f^{-1}(x)$ are $(-3,8)$
11. Given the recursion formula defined by $t_{1}=5, t_{n}=2 t_{n-1}-3$, determine t_{2}.
\qquad
12. Given the conic defined by $y^{2}=-8 x$, determine:
(a) the coordinates of the focus.

(b) the equation of the directrix.

$$
\frac{x=2}{\text { no mark for "2" }}
$$

13. Simplify $a^{\frac{5}{4}} \cdot a^{\frac{3}{4}}$
$a^{2} \quad$ (c) $a^{8 / 4}$
\qquad

OTTAWA -CARLETON DISTRICT SCHOOL BOARD
 MCR 3U Functions \& Relations Final Examination

PART B (67 marks)
page 3 of 8
Each of the following questions requires a short answer completion in the space provided.
Show all work. Mark values for each question appear in the left margin.

1. Find the defining equation of the conic whose graph is shown below. Express your answer in standard form.
[3]

$$
\frac{(x+4)^{2}}{9}-\frac{(y-3)^{2}}{4}=-1
$$

2. Simplify $\frac{5+3 i}{4-i}$
(a) the exact value of $\sin \theta$.

$$
\begin{aligned}
& r=\sqrt{13} \\
& \sin \theta=-\frac{3}{\sqrt{13}}
\end{aligned}
$$

(b) the value of θ to the nearest degree, where $0^{\circ} \leq \theta \leq 360^{\circ}$
[3]

$$
\begin{align*}
& \text { the value of } \theta \text { to the nearest degree, where } 0^{\circ} \leq \theta \leq 360^{\circ}{ }^{-1}\left(\frac{3}{\sqrt{13})}\right. \tag{array}\\
& \text { the related a cute angle of } \theta=\sin ^{\circ} \\
& \begin{aligned}
& =56^{\circ} \\
& \begin{aligned}
& \text { is in QII } \theta=180^{\circ}+56^{\circ} \\
&=236^{\circ}
\end{aligned} \text { (where }
\end{aligned}
\end{align*}
$$ $\frac{a}{a+3}+\frac{9 a}{3 a^{2}+8 a-3}$

$=\frac{a}{a+3}+\frac{9 a}{(a+3)(3 a-1)}$
$=\frac{3 a^{2}-a+9 a}{(a+3)(3 a-1)}$

$$
=\frac{3 a^{2}+8 a}{(a+3)(3 a-1)}
$$

\qquad

MCR 3U Functions \& Relations Final Examination

PART B (67 marks)
teacher use only
5. Simplify and state the restrictions

$$
\frac{2 m+3}{2 m-3} \div \frac{m+3}{9-4 m^{2}}
$$

$$
=\frac{2 m+3}{2 m-3} \cdot \frac{(3-2 m)(3+2 m)}{m+3}
$$

$$
=\frac{-(2 m+3)^{2}}{m+3}
$$

$$
m \neq \pm \frac{3}{2},-3
$$

6. An arrow is shot from the roof of a building. Its height above the ground is modelled by $h(t)=-5 t^{2}+40 t+20$, where h is the height in metres and t is the time elapsed in seconds, from the time the arrow was shot. For what length of time is the arrow more than 35 m above the ground? Express your answer to the nearest tenth of a second.
The arrow is 35 m above the ground when

$$
-5 t^{2}+40 t+20=35 \quad \therefore \text { The arrow is above } 35 \mathrm{~m} \text { for }
$$

$$
-5 t^{2}+40 t-15=0
$$

$$
t^{2}-8 t+3=0
$$

$$
\begin{align*}
& \text { approximately } 7.2 \text { s } \tag{4}\\
& \text { correct equation to apply }
\end{align*}
$$

$$
t=\frac{8 \pm \sqrt{64-12}}{7} \quad \text { Quad. formula to }
$$

$$
\begin{aligned}
& t \doteq 0.4 \text { or } t^{\bullet}=7.6 \\
& \text { Prove the identity: } \\
& \tan \theta-\frac{1}{\tan \theta}=\frac{2 \sin ^{2} \theta-1}{\sin \theta \cos \theta}
\end{aligned}
$$

7. Prove the identity:

$$
\begin{equation*}
L S=\frac{\sin \theta}{\cos \theta}-\frac{\cos \theta}{\sin \theta} \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& =\frac{\sin ^{2} \theta-\cos ^{2} \theta}{\sin \theta \cos \theta} \\
& =\frac{\sin ^{2} \theta-\left(1-\sin ^{2} \theta\right)}{\sin \theta \cos \theta} \\
& =\frac{2 \sin ^{2} \theta-1}{\sin \theta \cos \theta} \\
& =\text { RS. } Q E D .
\end{aligned}\left\{\begin{array}{l}
\sqrt{\text { knowing } \tan \theta=\frac{\sin \theta}{\cos \theta}} \\
\text { knowing correctuse of } \\
\text { Pythagorean Identity } \\
\text { Vorrect algebraic simplification }
\end{array}\right.
$$

8. Solve for θ :
(a) $\tan \theta-\sqrt{3}=0,0 \leq \theta \leq 2 \pi$ (exact values)
[2]
(b) $3 \cos ^{2} \theta-7 \cos \theta+2=0,0 \leq \theta \leq 2 \pi$ (round answers correct correct θ values $\tan \theta=\sqrt{3}$
$(3 \cos \theta-1)(\cos \theta-\alpha)=0$
$\cos \theta=\frac{1}{3}$ or $\cos \theta=2$
but $-1 \leq \cos \theta \leq 1$
$\therefore \cos \theta=\frac{1}{3}$
anglemeasured in degrees

OTTAWA -CARLETON DISTRICT SCHOOL BOARD
MCR 3U Functions \& Relations Final Examination
PART B (67 marks)

teacher

 use only9. If you were given a function in the form $y=f(x)$, explain how you would determine the defining equation of its inverse, namely $y=f^{-1}(x)$.
[2] - Switch x and y in the equation and solve for y. (switch solve)
10. The graph of a parabolic relation is shown.
(a) State the domain.
[1]
[1]
$\{x \mid x \in R, x \geq-2\}$

(b) Graph the inverse on the same grid.

(c) Consider the statement: "Since the given relation is not a function, then its inverse is not a function." Is this statement true? Explain your answer.
No. The inverse passes the vertical cinetest
and the original function doesn't
\therefore The original is not a function bat
the inverse is.
11. Solve for x :

$27^{x-2}=\frac{1}{9^{x}}$
[3]

$$
\begin{aligned}
\left(3^{3}\right)^{x-2} & =\left(3^{-2}\right)^{x} \\
3^{3 x-6} & =3^{-2 x} \\
3 x-6 & =-2 x \\
5 x & =6 \\
x & =\frac{6}{5}
\end{aligned}
$$

\qquad

PART B (67 marks)
12. Sketch one cycle of the following trigonometric function:

$$
y=-2 \sin \left(3 x+\frac{\pi}{2}\right)=-2 \sin \left[3\left(x+\frac{\pi}{6}\right)\right]
$$

$$
\text { period }=\frac{2 \pi}{3}
$$

$$
\text { p.s. }=-\frac{\pi}{6}
$$

$$
\text { ample }=2
$$

$$
\text { refl in } x \text {-axis }
$$

$$
\begin{aligned}
& \text { (Correct period on } \\
& \text { graph } \\
& \text { v correct amplitude } \\
& \text { on rices } \\
& \text { vel in x-axis } \\
& \text { correct shift }
\end{aligned}
$$

13. Given the series $800+400+200+100+\ldots$, using the appropriate forms,
(a) determine t_{12} to 3 decimal places.

$$
\begin{aligned}
& \text { geometric series } \\
& a=800 \quad t_{n}=a r^{n-1} \\
& r=\frac{1}{2} \quad t_{12}=800\left(\frac{1}{2}\right)^{11}
\end{aligned}
$$

$$
=800(2) \quad\left\{\begin{array}{l}
\sqrt{t n} \text { formula correct } \\
=0.391 \\
\sqrt{t 2} \text { value correct }
\end{array}\right.
$$

(b) determine S_{12} to the nearest decimal place. $v t_{12}$ value correct

$$
\begin{aligned}
S_{n} & =\frac{a\left(r^{n}-1\right)}{r-1} \\
S_{12} & =\frac{800\left[\left(\frac{1}{2}\right)^{12}-1\right]}{-\frac{1}{2}} \\
& \doteq 1599.6
\end{aligned}
$$

14. Two guy wires as shown in the diagram support a microwave tower. What is the height, h metres, of the tower, to the nearest metre?

$$
\cos \angle P=\frac{75^{2}+100^{2}-50^{2}}{2(75)(100)}
$$

[4]

$$
\begin{aligned}
& \angle P \doteq 28.96^{\circ} \\
& \sin \angle P=\frac{h}{75} \\
& h \equiv 75 \sin 28.96^{\circ} \\
&=36.3
\end{aligned}
$$

The height of the tower
is approx innately 36 m tall.

MCR 3U Functions \& Relations Final Examination

PART B (66 marks)
15. You will be scheduled to work 40 hours during the March Break. You can choose the method of payment from the following:
Choice 1: You can be paid $\$ 15$ per hour
Choice 2: You can be paid $\$ 1$ for the first hour, $\$ 2$ for the second hour, $\$ 3$ for the third hour, and the pattern continues.

What is your choice? Justify your answer.

$$
\sqrt{\text { correct total }}
$$

$$
\begin{aligned}
\text { With choice (1), total earnings } & =15(40) \\
& =800
\end{aligned} \quad \begin{array}{r}
15 \\
\text { with correct formula a (2), the total earnings is the sum of the } \\
\text { for (2) }
\end{array}
$$

$$
\begin{aligned}
& \text { With choice (1), total earnings }=1 / 5(40) \\
& =800 \\
& \text { with choice (2), the total earnings is the sum of th } \\
& \text { arithmetic series } S_{n}=\frac{n}{2}\left(a+t_{n}\right) \\
& \qquad \begin{array}{l}
\text { with }
\end{array}=40, a=1, t_{n}=40 \\
& \therefore S_{40}=120(41) \\
& =820
\end{aligned}
$$

\therefore Total earnings of (2) are higher \therefore I would choose (2)
16. The inside temperature of a building is modelled by $T(t)=3 \cos (0.262 t)+22$, where T is the temperature in ${ }^{\circ} \mathrm{C}$ and t is the number of hours elapsed since 5 A.M. The graph is shown below.
(a) Using an appropriate calculation, explain why the coefficient of t in the equation is 0.262 .

$$
k=0.262
$$

[2]

$$
\begin{aligned}
\text { period } & =\frac{2 \pi}{k} \\
& =\frac{2 \pi}{0.262} \\
& =24
\end{aligned}
$$

a k-value of 0.262 allows

$$
\text { the period to be } 24 \text { hrs (on eday) }
$$

$$
\checkmark \text { knowing period }=\frac{2 \pi}{k}
$$

(b) In another building, the temperature fluetuatesin aimitar-mranner except that the
\checkmark using the fact of 24 h period in explanation) maximum temperature is $27^{\circ} \mathrm{C}$ and the minimum temperature is $23^{\circ} \mathrm{C}$. Determine the defining equation that models the temperature in this other building.

$$
\begin{aligned}
\text { amplitude } & =\frac{27-23}{2} \\
& =2
\end{aligned}
$$

$$
\begin{align*}
\text { vertical shift } & =\frac{27+23}{2} \tag{2}\\
& =25
\end{align*}
$$

$\therefore T(t)=2 \cos (0.262 t)+25$

\qquad

OTTAWA-CARLETON DISTRICT SCHOOL BOARD

MCR 3U Functions \& Relations Final Examination

PART B (67 marks)
teacher use only
17. A radar screen shows the activity within a circular region of radius 60 km .
(a) Assuming the centre of the screen is $(0,0)$, write the equation that represents this circle.

$$
\begin{equation*}
x^{2}+y^{2}=3600 \quad \text { correct equation } \tag{1}
\end{equation*}
$$

(b) A small aircraft flies on a path given by the equation $x+2 y=140$. Is this small aircraft detected on the radar screen? Explain your answer algebraically.
The plane is detectable if the line and circle intersect For the intersection $p t s$, if they exist,

$$
(140-2 y)^{2}+y^{2}=3600
$$

$19600-560 y+4 y^{2}+y^{2}=3600$
$5 y^{2}-560 y+16000=0$
$y^{2}-112 y+3200=0$
$y^{2}-112 y+3200=0$
check the discriminant for number of
Solutions: $D=112^{2}-4(3200)$
18. Given the conic defined by $25 x^{2}+9 y^{2}-100 x+18 y-116=0$, determine: since $D<0$, the
line and circle do not
on the screen
knowing to look for an intersection
(a) the coordinates of the centre
V substituting and simplifying

$$
25\left(x^{2}-4 x+4\right)+9\left(y^{2}+2 y+1\right)=116+100+9
$$ to std quad eq n

[2]

(b) the coordinates of the foci.

$$
\frac{(x-2)^{2}}{9}+\frac{(y+1)^{2}}{25}=1
$$

[3]

$$
\begin{aligned}
& a=5, b=3 \quad \therefore c=4 \\
& \text { The foci are } \\
& (2,3) \text { and }(2,-5)
\end{aligned}
$$

\qquad

