7.5 Problem Solving - Mortgages

Important Notes:

- In Canada, mortgage interest is always compounded semi-annually, but in the U.S., mortgage interest is compounded monthly. Payments may be made at a different time i.e. monthly or bi weekly, so P/Y and C/Y do not need to match.
- Always input $C / Y=2$ after P / Y, or the calculator automatically resets C / Y to match the P / Y.
- Cash outflows, like Mortgage Payments, are negative.
- Cash inflows, like the Mortgage Amount, are positive.
- The most common term for mortgages is a five year term. After 5 years you must renew the mortgage, which means taking out a new mortgage at current interest rates for the balance owing after 5 years.

Mortgage Vocabulary

mortgage	mortgage payment	mortgagor	mortgagee
mortgage broker	principal	equity	collateral
down payment	payment frequency	accelerated payment	amortization period
fixed rate	variable rate	CMHC	mortgage insurance
land transfer tax	home inspection fee	closing costs	length of term

\rightarrow Mortgage:	A special loan that has a "lien" as security.
Mortgagor:	The borrower of the money.
Mortgagee:	The lender of the money.

Ex. 1 You have a \$173,500 mortgage, with monthly payments, at 3.2% /a over 25 years.
a) Calculate the monthly payments.

$$
\begin{aligned}
& \mathrm{N}=25 \times 12 \\
& 1 \%=3.2 \\
& \mathrm{PV}=173500 \\
& \mathrm{PMT}=\mathrm{ZG} \rightarrow-838.99 \\
& \mathrm{FV}=0 \\
& \mathrm{P} / \mathrm{Y}=12 \\
& \mathrm{C} / \mathrm{Y}=2 \text { AHCWAYSA } \\
& \mathrm{PMT}: \text { END BEGIN }
\end{aligned}
$$

c) How much of the money paid was from the principal?

$$
\begin{aligned}
& \mathrm{N}=5 \times 12 \\
& \mathrm{I} \%=3.2 \\
& \mathrm{PV}=173500 \\
& \mathrm{PMT}=-838.99 \\
& \mathrm{FV}=\text { 图 } \rightarrow-148863.83 \\
& \mathrm{P} / \mathrm{Y}=12 \\
& \mathrm{C} / \mathrm{Y}=2 \\
& \mathrm{PMT}: \mathrm{END} \text { BEGIN }
\end{aligned}
$$

b) How much money have you paid over the first 5 years?

$$
\begin{aligned}
\text { Ant paid } & =12 \times 5 \times 838.99 \\
& =50339.40
\end{aligned}
$$

$$
\begin{gathered}
(\text { This is } \text { Principal }+) \\
\text { Interest }
\end{gathered}
$$

d) How much of the money paid was interest?
Total pod: $\$ 50339.40$
Total principal: $\$ 24636,17$

$$
\begin{aligned}
\therefore I & =50339.4-24636.17 \\
& =\$ 25703.23
\end{aligned}
$$

\therefore You paid $\$ 125703.23$
\therefore Principal paid $=173500-148863.83$

$$
=\$ 24636.17
$$

e) How much money have you paid over the 25 years?

$$
\begin{aligned}
\text { Total } & =838.99 \times 25 \times 12 \\
& =\$ 251697
\end{aligned}
$$

\therefore Total paid is $\$ 251697$
f) How much interest will you pay over 25 years?

$$
\begin{aligned}
\text { Interest } & =251697-173500 \\
& =78197
\end{aligned}
$$

\therefore Total interest

$$
\$ 78197
$$

g) From your answers, do you pay off more interest or more principal in the first 5 years of your mortgage? Last 5 years?

More interest
Less principal
\uparrow
Less interest
More principal

Ex. 2 Given an interest rate of 5\% for a mortgage of \$250000, determine your monthly payments and compare the total amount of interest paid if you amortize the mortgage over 20 years and over 25 years. Discuss the pros and cons between both options.

20 years
25 years
$\mathrm{N}=20 \times 12$
$\mathrm{I} \%=5$
$\mathrm{PV}=250000$
$\mathrm{PMT}=\square \rightarrow-1642.81$
$\mathrm{FV}=0$
$\mathrm{P} / \mathrm{Y}=12$
$\mathrm{C} / \mathrm{Y}=2$
$\mathrm{PMT}: \mathrm{END}$ BEGIN

Total paid $=1642.81 \times 20 \times 12$
$=394274.40$
Better option
if you can afford it
$\mathrm{N}=25 \times 12$
$1 \%=5$
$\mathrm{PV}=250000$
$\mathrm{PMT}=\square-1454.01$
$\mathrm{FV}=0$
$\mathrm{P} / \mathrm{Y}=12$
$\mathrm{C} / \mathrm{Y}=2$
$\mathrm{PMT}: \mathrm{END}$ BEGIN
$=1454.01 \times 25 \times 12$
$=436203$

Ex. 3 Given an interest rate of 5% for a mortgage of $\$ 250000$, use your monthly p ayments from Ex. 2 (with amortization period of 25 years) and halve the amount. This will now be your bi-weekly and semimonthly payments. Compare how long it will take to pay off the mortgage using bi-weekly vs. semimonthly payments. Discuss why one frequency of payment is better than the other. Do you think the home owner will find a significant difference in the payments on a weekly basis?
$\frac{1454.01}{2}$
$\begin{array}{ll}=727.01 & \text { bi-weekly } \\ \qquad \begin{array}{l}\mathrm{N}=\square \rightarrow 558.43 \\ 1 \%=5 \% \\ \mathrm{PV}=250000 \\ \mathrm{PMT}=-727.01 \\ \mathrm{FV}=0 \\ \mathrm{P} / \mathrm{Y}=26 \\ \mathrm{C} / \mathrm{Y}=2 \\ \mathrm{PMT}: \text { END BEGIN }\end{array} \\ \end{array}$
$N=\#$ yrs $\times \#$ pmts
$\# y r s=\frac{N}{\# p}$
\#punts
$=\frac{558.43}{26}$
$=21.5$

semi-monthly (24)
$\mathrm{N}=\square \rightarrow 598.8$ $\mathrm{I}=\square=5$ $\mathrm{PV}=250000$ $\mathrm{PMT}=-727.01$ $\mathrm{FV}=0$ $\mathrm{P} / \mathrm{Y}=24$ $\mathrm{C} / \mathrm{Y}=2$ $\mathrm{PMT}:$ END BEGIN

$$
\text { \#yrs }=\frac{\infty}{\# p m t s}
$$

$$
=\frac{598.8}{24}
$$

$$
=24.95
$$

Ex. 4 Ms. Mes makes monthly payments on a $\$ 72000$ mortgage over 25 years at 11.125% for 5 years. After 2 years, she decides to increase the monthly payment by $\$ 100$ and at the end of the $4^{\text {tr }}$ year she is able to make an extra principal payment of $\$ 2000$.
(1) Find monthly payment
(2) How much left after 2 y's
(3) How much left after

2 yrs at increased put.
(4) Remaining after lump
sum + 1 yr puts.
a) What is the principal balance owing at the end of 5 yrs? 4 screens needed to complete!

(2) | $\mathrm{N}=2 \times 12$ |
| :--- |
| $1 \%=11.125$ |
| $\mathrm{PV}=72000$ |
| $\mathrm{PMT}=-699.21$ |
| $\mathrm{FV}=7 \rightarrow-70754.91$ |
| $\mathrm{P} /=12$ |
| $\mathrm{C} / \mathrm{Y}=2$ |
| $\mathrm{PMT}: \mathrm{GND}$ BEGIN |

$$
\text { After } 2 y r s \text {, loan is }
$$

(3)

$\mathrm{N}=25 \times 12$
$1 \%=11.125$
$\mathrm{PV}=72000$
$\mathrm{PMT}=\square \rightarrow-699.21$
$\mathrm{FV}=0$
$\mathrm{P} / \mathrm{Y}=12$
$\mathrm{C} / \mathrm{Y}=2$
$\mathrm{PMT}: \mathrm{END}$ BEGIN

$1 \%=11.125$
$P V=72000$
$\mathrm{PMT}=-699.21$
$\mathrm{FV}=\square-70754.91$
$\mathrm{C} Y=12$
PM: END BEGIN

$$
70754.91
$$

$\mathrm{N}=2 \times 12$
$1 \%=11.125$
$\mathrm{PV}=70754.91$
$\mathrm{PMT}=-799.21$
$\mathrm{FV}=\square 7 \mathrm{O}-66541.22$
$\mathrm{P} / \mathrm{Y}=12$
$\mathrm{CY}=2$
$\mathrm{PMT}: \mathrm{END}$ BEGIN

$\mathrm{N}=1 \times 12$
$1 \%=11.125$
$\mathrm{PV}=66541.22-2000$
$\mathrm{PMT}=-799.21$
$\mathrm{FV}=17-61837.82$
$\mathrm{P} / \mathrm{Y}=12$
$\mathrm{C} / \mathrm{Y}=2$
$\mathrm{PMT}: \mathrm{END}$ BEGIN

Her loan is worth \$61837.82 after $5 y$ rs
b) By how long has the amortization period of the mortgage been shortened?

Original loan was for 25 years!

$$
D_{i f f}=25-16.16
$$

$$
=8.84
$$

\therefore She shortened
her mortgage by
8.84 years!

Homework
 Handowt 7.5
 Using the TVM Solver for Mortgage Calculations

Textbook always assumes monthly payments.

