### 7.4 Present Value of an Annuity

Present Value of an Annuity: The amount of money (principal) that must be invested/borrowed NOW to provide a given series of equal payments at equal intervals of time.

Ex. 1 Next year, Jane is going back to university for a Ph.D. in psychology. She wants to know how much money to deposit now into an account that pays $6 \% / \mathrm{a}$, compounded annually, to provide a $\$ 5000$ payment each year for 4 years, with the first payment due a year from now.


Present Value of an Annuity Formula:

$$
P V=R\left[\frac{1-(1+i)^{-n}}{i}\right] \quad R=\frac{P V i}{\left[1-(1+i)^{-n}\right]}
$$

- Use this to find the present value.

- Use this to find the regular payment.


## where

PV = Present Value
$R=$ Regular payment (made at the end of the compounding period)
$\mathrm{i}=$ interest rate per compound pd.
$\mathrm{n}=\#$ of compound periods/\# of payments (must be equal to use formula)

Ex. 1 James wants to invest now so that he will receive $\$ 700$ every month for 5 years. How much should he invest now at 4.3\%/a compounded monthly to achieve this?

By Hand
Givens
$R=700$
$i=\frac{0.043}{12}$
$n=12 \times 5$
$=60$
$P V=R\left[\frac{1-(1+i)^{-n}}{i}\right]$
$=700\left[\frac{1-\left(1+\frac{0.043}{12}\right)^{-60}}{\frac{0.043}{12}}\right]$

$$
\doteq 37731.35
$$

The present value is

$$
\$ 37731.35
$$

b) How much interest did he earn?

$$
\begin{aligned}
\text { Final amount } & =\$ 700 \times 60 \\
& =42000
\end{aligned}
$$

He only paid \$37731.35
$\therefore$ Interest is $42000-37731.35$

$$
=4268.65
$$

Ex. 2 Charlie has won the lottery prize of a lump sum payment of \$78000. He has placed the money into an account at 6.3\%/a compounded semiannually and plans to withdraw an equal payment every 6 months for 10 years. How big will the payment be? $\quad(5315.80)$

By Hand
Given

$$
\begin{aligned}
P v & =78000 \\
i & =\frac{0.063}{2} \\
n & =2 \times 10 \\
& =20
\end{aligned}
$$

$$
R=P V_{i}
$$

$$
\left[1-(1+i)^{-n}\right]
$$

$$
=78000\left(\frac{0.063}{2}\right)
$$

$$
\left[1-\left(1+\frac{0.063}{2}\right)^{-20}\right]
$$

$$
\pm 5315.80
$$

The payment will be

$$
\$ 5315.80
$$

b) How much interest has he earned?

$$
\text { Final amount: } 5315.80 \times 20
$$

$$
=106316
$$

$$
\text { Only paid } 78000
$$

$$
\begin{aligned}
\text { Interest } & =106316-78000 \\
& =28316
\end{aligned}
$$



