
7.4 Present Value of an Annuity

Present Value of an Annuity: The amount of money (principal) that must be invested/borrowed NOW to provide a given series of equal payments at equal intervals of time.

Ex. 1 Next year, Jane is going back to university for a Ph.D. in psychology. She wants to know how much money to deposit now into an account that pays 6%/a, compounded annually, to provide a \$5000 payment each year for 4 years, with the first payment due a year from now.

Present Value of an Annuity Formula:

$$PV = R \left\lceil \frac{1 - (1+i)^{-n}}{i} \right\rceil \qquad R = \frac{PVi}{\left\lceil 1 - \left(1+i\right)^{-n} \right\rceil}$$

$$R = \frac{PVi}{\left\lceil 1 - \left(1 + i\right)^{-n}\right\rceil}$$

Use this to find the present value.

• Use this to find the regular payment.

where

PV = Present Value

R = Regular payment (made at the end of the compounding period)

i = interest rate per compound pd.

n = # of compound periods/# of payments (must be equal to use formula)

Ex. 1 James wants to invest now so that he will receive \$700 every month for 5 years. How much should he invest now at 4.3%/a compounded monthly to achieve this?

By Hand Givens

$$R = \frac{1}{1} = \frac{0.643}{12}$$

.. The present value is

By TVM

N=60

$$1\%=4.3$$

PV= \longrightarrow -37731.35
PMT=700
FV=0
P/Y=12
C/Y=12
PMT: END BEGIN

b) How much interest did he earn? Final amount = \$700 x60 = 42000

He only paid \$37731.35

: Interest is
$$42000 - 37731.35$$

= 4268.65

Ex. 2 Charlie has won the lottery prize of a lump sum payment of \$78 000. He has placed the money into an account at 6.3%/a compounded semi-annually and plans to withdraw an equal payment every 6 months for 10 years. How big will the payment be?

By Hand

Siven PV = 78000 i = 6.063 R = PV i $I - (1 + i)^{n}$ $I - (1 + i)^{n$

By TVM

N= 20 1%=6.3 PV=-78000 PMT= 1-75315.80 FV=0 P/Y=2 C/Y=2 PMT: END BEGIN

b) How much interest has he carned? Final amount: 5315.80 x 20

= 106316

: The payment will be

\$531580

Only Paid 78000

 $\frac{1}{2} \ln \frac{1}{16} = \frac{106316 - 78000}{16}$

Homework
Pg. 461
#C2,3bc,
4,6-9,11,12,14
(Graphing Calculator
4,6,9)