7.3 Amount of an Annuity

Annuity: A series of equal payments made at regular intervals (savings plan, paying off a debt, etc.)

Last June 30, Nigel decided to save for a trip when he graduates. Starting next June 30, and for each of the following 3 years, he plans to deposit $\$ 700$ into an account that pays $4.5 \% / \mathrm{a}$, compounded annually. How much money will Nigel have accumulated when he makes the last deposit into this annuity?

- How much is each deposit worth at the end of the 4 years?

How much money in total did Nigel accumulate?

$$
\begin{aligned}
\text { Total } & =700(1.045)^{3}+700(1.045)^{2}+700(1.045)+700 \\
& =\$ 2924.74
\end{aligned}
$$

- Annuity Formulas:

$$
A=\frac{R\left[(1+i)^{n}-1\right]}{i}
$$

- Use this to find the amount.

Ex. 1 Mary deposits $\$ 250$ into an account at the end of each month paying $7.2 \% /$ a compounded monthly for 5 years. How much money will she have at the end of 5 years?

By Hand:

$$
A=\frac{R\left[(1+i)^{n}-1\right]}{i}
$$

Given
$R=250$

$$
=250\left[\left(1+\frac{0.072}{12}\right)^{60}-1\right]
$$

$i=\frac{0.072}{12}$

$$
\frac{0.072}{12}
$$

$\eta=12 \times 5$

$$
=60
$$

$$
\doteq 17991.18
$$

By TVM:

Apps , 1: Finance..., ENTER , 1: TVM Solver...

$$
\mathrm{N} \quad=\# \text { of compounding periods }
$$

N \quad \# of compounding periods	TAKE NOTE:	
In annuities $N=$ number of		
I\%	$=$ interest rate /a as a percent	compounding periods not years.
PD	$=$ present value (P)	
PM	$=$ the payment amount (put as " 0 " if there are no payments)	

$$
\begin{aligned}
& \mathrm{N}=5 \times 12=60 \\
& 1 \%=7.2 \\
& \mathrm{PV}=0 \\
& \mathrm{PMT}=-250 \\
& \mathrm{FV}=\square \rightarrow 17991.18 \\
& \mathrm{P} / \mathrm{Y}=12 \\
& \mathrm{C} / \mathrm{Y}=12 \\
& \mathrm{PMT}: \text { END BEGIN }
\end{aligned}
$$

Ex. 2 Cameron wants to be an astronaut and needs to save for university. He plans on making regular bi-weekly deposits into an account paying 5.3\%/a compounded bi-weekty If he wants to have $\$ 9000$ in 3 years, how much does he need to deposit each time?

Ex. 3 Who wants to be a Millionaire?

You want to know how much to put away every month, from now until you retire, to become a millionaire. Assume interest at 5\% compounded monthly, and that you retire at 65.

$$
\begin{aligned}
& \mathrm{N}=49 \times 12 \rightarrow 588 \\
& 1 \%=5 \\
& \mathrm{PV}=0 \\
& \mathrm{PMT}=\square \rightarrow-395.71 \\
& \mathrm{FV}=1000008 \\
& \mathrm{P} / \mathrm{Y}=12 \\
& \mathrm{C} / \mathrm{Y}=12 \\
& \mathrm{PMT}: \text { END BEGIN }
\end{aligned}
$$

$$
\begin{aligned}
& \text { You will need } \$ 395.71 \text { as } \\
& \text { monthly payment }
\end{aligned}
$$

Homework
 Pg. 453 HC2,2bc,4-6,3,11,12a
 (Graphing Calculator 4-6)

