STATION A

1. Determine the third term of the sequence given

$$
t_{n}=\frac{2 n^{3}-3}{n^{2}}
$$

2. Find the third term of the sequence for $n \in N$ and $n>1$, $t_{1}=-2, \quad t_{n}=5\left(t_{n-1}\right)-4$
3. Find the next two terms of each sequence:
a) $-3,9,-27, \ldots$
b) $8,-1,-10$

STATION B

1. Find the simplified general term if :
a) the first term is -21 and the common ratio is 8
b) the first term is 12 and common difference is -3
2. A term of each sequence is represented by a variable. If the sequence is
a) Geometric, what is the value of m : 16, $m, 4 \ldots$
b) Arithmetic, what is the value of $m: 16, m, 4, \ldots$
3. Determine a recursion formula for $23,-46,92, \ldots$

STATION C

1. Use patterns in the terms of the expansion to determine the following of $(x-y)^{17}$.
a) The number of terms in the expansion
b) The value of k in the term $-6188 x^{k} y^{5}$
c) The coefficient of the term $k x^{3} y^{14}$.
2. Describe how Pascal's Triangle and expanding binomials are related.
3. What row number of Pascal's triangle has a row sum of 8192 ?

STATION D

1. Calculate the sum of the first 24 terms for the following series: $-6, \frac{-7}{2},-1 \ldots$
2. Determine the general simplified term for the following sequence: 4096, 2048, 1024,....

STATION E

1. Determine the number of terms for the following sequence: 5, 20, 80, ... 81920
2. The $10^{\text {th }}$ term of an arithmetic series is 34 , and the sum of the first 20 terms is 710 . Determine the $25^{\text {th }}$ term.

STATION F

1. How many paths are there from A to B ? Assume there is no backtracking.

2. Use your knowledge of Pascal's Triangle to fill in the missing numbers.

STATION G

1. In a lecture hall there are 16 seats in the first row. The number of seats in each successive row increases by 3. How many seats in the $15^{\text {th }}$ row?
2. You agree to do the household chores every day for a month (30 days). You have a choice of being paid in one of two ways: 1 cent on day one, 2 cents on day two, 4 cents on day three, etc., doubling each day; or $\$ 10$ for each day. Which option would you choose and why?

STATION H

1. Find the 6 th simplified term in the expansion $\left(2 x-\frac{3}{\sqrt[4]{x}}\right)^{10}$
2. The terms given by $x-2, x+7,48$ form a geometric sequence. Find the value(s) of x.
