7.2 Compound Interest

Present Value (P or PV):

- Principal that needs to be invested/borrowed now to achieve a future goal.
- PV can be calculated when the interest rate, compounding period and length of term are known.

Present Value Formula: Use compound interest formula, rearranged for "P".

$$
\begin{array}{ll}
A & =P(1+i)^{n} \\
\frac{A}{(1+i)^{n}}=P & \begin{array}{l}
\text { where } \\
A
\end{array} \\
A(1+i)^{-n}=P & \begin{array}{l}
P=\text { Present at end of investment }(\$) \\
i=\text { Interest rate per compound }(\$)
\end{array} \\
n=\text { \# of compound periods }
\end{array}
$$

Ex. 1 Julia wants to have $\$ 5000$ in 2 years to use as a down-payment for a car. How much does she need to invest now at 6.3\%/a compounded monthly?
Given

$$
P=\frac{A}{(1+i)^{n}}
$$

$P=$?

$$
=\frac{5000}{\left(1+\frac{0.063}{12}\right)^{24}}
$$

$$
\therefore \text { She will reed to }
$$

$A=5000$
$i=\frac{0.063}{12}$

$$
=4409,53
$$

invest $\$ 4409.53$

$$
\begin{aligned}
n & =2 \times 12 \\
& =24
\end{aligned}
$$

Ex. 2 David plans to put money into an RESP so that he has $\$ 9000$ in 5 years. Which option is the best deal for David?
a) 7.2% compounded semi-annually
b) 6.5% compounded bi-weekly

$\frac{\text { Givens }}{A=9000}$		
$i=\frac{0.072}{2}$	$=\frac{A}{(1+i)^{n}}$	$\frac{\text { Givens }}{\left(1+\frac{0.072}{2}\right)^{16}}$

The TVM Solver

A program on the graphing calculator used for financial calculations.
To find the TVM Solver program:
APPS, 1: Finance..., ENTER, 1: TVM Solver...
ENTER

```
N = # of years
I% = interest rate/a as a percent
PV = present value (P)
PMT = the payment amount (put as "0" if there are no payments)
FV = future value (A)
P/Y = number of payments per year (putas "1" if there are no payments)
C/Y = number of compound periods per year
PMT: = chooseEND
```

To determine a value:

- Move the cursor to the appropriate line and press alpha enter

Ex. 3 Harriet invested $\$ 4000$ in an investment fund that pays $6.5 \% / \mathrm{a}$ compounded monthly. How much money is in the account after 8 years?

Ex. 4 How much do you need to invest now at 8.2\%/a compounded quarterly to have $\$ 20000$ in 5 years?

```
\(\mathrm{N}=5\)
\(1 \%=8.2\)
\(\mathrm{PV}=\mathrm{mm}-13328.15\)
\(\mathrm{PMT}=0\)
\(\mathrm{FV}=20000\)
\(\mathrm{P} / \mathrm{Y}=1\)
\(\mathrm{C} / \mathrm{Y}=4\)
PM: END BEGIN
\(\mathrm{PMT}=0\)
\(\mathrm{FV}=20000\)
\(\mathrm{P} / \mathrm{Y}=1\)
\(\mathrm{C} / \mathrm{Y}=4\)
PM: END BEGIN
```

$$
\begin{aligned}
& \text { You need to } \\
& \text { invest } \$ 13328.15
\end{aligned}
$$

Ex. 4 Graham deposits $\$ 4500$ into an account paying 3.5\%/a compounded monthly. How long will it take him to have $\$ 8000$ to buy a motorcycle?

```
\(\mathrm{N}=\square \quad \rightarrow 16.5\)
\(1 \%=3.5\)
\(P V=-4500\)
PMT= 0
\(F V=8000\)
\(P / Y=1\)
\(C / Y=12\)
PMT= 0
\(F V=8000\)
\(P / Y=1\)
\(C / Y=12\)
```

```
PMT: END BEGIN
```

```
PMT: END BEGIN
```

. It will take
16.5 yrs

Ex. 5 Jason invested $\$ 1200$ in a fund that compounded interest semiannually. At what rate did he invest at if he earned $\$ 500$ interest in 6 years?

$$
\begin{aligned}
& \mathrm{N}=6 \\
& \mathrm{I} \%=\square \rightarrow 5.9 \\
& \mathrm{PV}=-1200 \\
& \mathrm{PMT}=0 \\
& \mathrm{FV}=1200+500=1700 \\
& \mathrm{P} / \mathrm{Y}=1 \\
& \mathrm{C} / \mathrm{Y}=2 \\
& \mathrm{PMT}: \text { END BEGIN }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \text { He will need } \\
& \text { to invest at } 5.9 \%
\end{aligned}
$$

Ex. 6 Which investment will reach $\$ 10000$ faster?
A: $\$ 7500$ invested at
4.5\%/a compounded monthly
B: $\$ 8200$ invested at 4.2\% compounded semi-annually

```
\(\mathrm{N}=\square \rightarrow 6.4\)
\(1 \%=4.5\)
\(P V=-7500\)
PMT=0
\(\mathrm{FV}=10000\)
\(\mathrm{P} / \mathrm{Y}=\)
\(C / Y=12\)
PMT: END BEGIN
```

```
\(\mathrm{N}=\square \rightarrow 4.8\)
```

$\mathrm{N}=\square \rightarrow 4.8$
$1 \%=4.2$
$1 \%=4.2$
$P V=-8200$
$P V=-8200$
PMT $=0$
PMT $=0$
$F V=10000$
$F V=10000$
$\mathrm{P} / \mathrm{Y}=1$
$\mathrm{P} / \mathrm{Y}=1$
$\mathrm{C} / \mathrm{Y}=2$
$\mathrm{C} / \mathrm{Y}=2$
PMT: END BEGIN
PMT: END BEGIN
$\uparrow 4.8$ yrs!
This chore is faster

```

Ex. 7 Go back to examples 1 and 2 and use the TVM solver to check your answers.

Ex. 8 Brian is investing \$6800 at an interest rate of 7\% per annum, compounded quarterly, for 2 years. Then, he will invest the amount plus additional money at \(6.5 \% / \mathrm{a}\), compounded semi-annually, for 3 years. At the end of the second investment, he wants to have \(\$ 15000\). How much extra must he invest for the second investment?


\title{
Homework Page 441 HC2,16,2,4-6,8,9,11,14,17
}

https://www.youtube.com/watch?v=TN7tM7iOx4E Virtual TI for Mac users.```

