7.1 Simple and Compound Interest

Simple Interest: Interest is earned only on the original investment.
Simple Interest Formulas:

$$
\mathrm{I}=\operatorname{Prt} \quad \mathrm{A}=\mathrm{P}+\mathrm{I}
$$

where
$A=A m o u n t ~ a t ~ t h e ~ e n d ~ o f ~ i n v e s t m e n t ~(\$) ~$
$P=$ Principal or original amount (\$)
$r=$ Rate of interest per year (decimal)
$t=$ Time invested (years)
I = Total interest earned (\$)

Ex. 1 Veeta invests $\$ 900$ at $5 \% /$ for 7 years.

a) How much interest does she earn?
b) What is the total amount in the account?
Given
a)
$r=0.05$
$I=\operatorname{Pr} t$
$=900(0.05)(7)$
$=3 / 5$
b) $A=P+I$
$=900+315$
$=1215$
$t=7 \quad$ She earns $\$ 315$

Ex. 2 Margot invests $\$ 100$ at 7\%/ a for 5 years.
a) Complete the table to examine what happens to her investment.

Year	Interest (\$)	Amount (\$)
0		100
1	7	107
2	7	114
3	7	121
4	7	128
5	7	135

b) Sketch the growth of her money over the 5 years.

Interest is constant: \$ \qquad
Slope is \qquad 7

Simple Interest:

- Increases by the same amount of money for each time interval.
- Creates an Arithmetic \qquad sequence.
- Represents Linear growth.

Compound Interest: http://time.com/money/4343323/compound-interest-returns

- Interest is added to the principal for the next compound period.
- Has the effect of paying/earning interest on interest.

Ex. 1 Consider Margot's investment of $\$ 100$ at 7% if the interest is compounded yearly.
a) Complete the table to examine what happens to her investment.

Year	Interest (\$)	Amount (\$)
0	$>$	100
1	7% of 700	107
2	7% F. 107 $=7.49$	114.49
3	0.07×14.49 $=8.01$	122.50
4	0.07×122.5 $=8.58$	131.08
5	0.07×131.08 $=9.18$	140.26

b) Sketch the growth of her money over the 5 years.

Compound Interest:

- Increases by a constant multipier for each compound period.
- Creates a geometric sequence.
- Represents exponential \qquad growth.

Compounding Periods --> How often interest is compounded.

Ex. 2 Myra invests $\$ 1500$ in an account paying 4.75\%/a
compounded quarterly. How much money will she have at the end of

5 years?
$\frac{\text { Given }}{P=1500}$
$r=4.75$
$i=\frac{0.0475}{4}$
$n=4$ cmpds $\times 5$ years
$=20$
$A=P(1+i)^{n} \quad 20$
$=1500\left(1+\frac{0.0475}{4}\right)^{2}$
$=1899.45$
She will have $\$ 1899.45$

Ex. 3 Sarah needs to borrow $\$ 4500$ to buy her first car.
(She will not be making payments but will pay it off in one lump sum in 5 years.)
She has 2 options:
a) $3.4 \% /$ a for 5 years compounded monthly OR
b) $3.9 \% /$ for 5 years compounded semi-annually.

Ex. 4 Don has $\$ 24000$ invested in a University fund that he hopes will grow to $\$ 30000$ in 3 years. What interest rate, compounded quarterly will he need to invest at in order to achieve his goal?

$$
\begin{aligned}
& \frac{\text { Given }}{P=24000} \quad A=P(1+i)^{n} \quad .12 \\
& A=30000 \quad 30000=24000(1+i) \\
& \begin{aligned}
n & =4 \times 3 \\
& =12
\end{aligned} \quad \frac{30000}{24000}=(1+i)^{12} \\
& 1.25=(1+i)^{12} \\
& \sqrt[12]{1.25}=1+2 \\
& \text { i of } 0.01877 \\
& i=\sqrt[12]{1.25}-1 \\
& \text { is QUARTERLY! } \quad=0.01877 \\
& r=0.01877 \times 4 \\
& =7.5 \% \\
& \therefore \text { The annual interest } \\
& \text { rate is } 7.5 \%
\end{aligned}
$$

HOMEWORK
 Pg. 423 4 C3, 3,5,8
 Pg. 433 \# 1,3d,5c,6,9,11,14
 OR
 EXVRA WORKSHEET ON WEBSIVE

