7.1 Simple and Compound Interest

Simple Interest: Interest is earned only on the original investment.

Simple Interest Formulas: I = Prt A = P + I where A = Amount at the end of investment (\$) P = Principal or original amount (\$) r = Rate of interest per year (decimal) t = Time invested (years) I = Total interest earned (\$) Perc Annum

Ex. 1 Veeta invests \$900 at 5%/a for 7 years. V_{eac} " a) How much interest does she earn?

Ex. 2 Margot invests \$100 at 7%/ a for 5 years.

a) Complete the table to examine what happens to her investment.

Year	Interest (\$)	Amount (\$)	
0	\times	100	2) + 7 What type of sequence does this sequence does this
1	7	107	2) + 7 What ence does sequence does represent?
2	7	114	« +7
3	7	121	2 Arithmetic.
4	7	128	2 LINEAR
5	7	135	

Simple Interest:

- Increases by the same amount of money for each time interval.
- Creates an <u>Arithmetic</u> sequence.
- Represents <u>Linear</u> growth.

.

Compound Interest: http://time.com/money/4343323/compound-interest-returns

• Interest is added to the principal for the next compound period.

• Has the effect of paying/earning interest on interest.

Ex. 1 Consider Margot's investment of \$100 at 7% if the interest is compounded yearly.

a) Complete the table to examine what happens to her investment.

Year	Interest (\$)	Amount (\$)	Line of this
0	\times	100	What type of what type of sequence does this represent?
1	7% of 100 7	107	represe
2	78 f 107 =7.49	114.49	12×1.07 Geometri
3	0.07 × 114,49 = 8.01	/22.50	Leo Geome
4	=8.58 8.58	131.08	
5	86.121×70.0 = 9.18	140.26	2

b) Sketch the growth of her money over the 5 years.

Compound Interest: • Increases by a constant multipier for each compound period. · Creates a <u>geometric</u> ____ sequence. · Represents <u>exponential</u> growth. **Compound Interest Formulas:** $A = P (1 + i)^n$ I = A - P . This is the formula for exponential growth. The growth factor is (1 + i). where P = Principal or amount invested/borrowed (\$) A = Amount at the end of the investment (\$) i = Interest rate per compound period (decimal) rate # of compounding periods per year n = Number of compound periods n = (# of years) x (# of periods per year)

Compounding Periods --> How often interest is compounded.

7.1 Simple and Compound Interest.notebook

Ex. 3 Sarah needs to borrow \$4500 to buy her first car.

(She will not be making payments but will pay it off in one lump sum in 5 years.) She has 2 options:

- a) 3.4 %/a for 5 years compounded monthly OR
- b) 3.9%/a for 5 years compounded semi-annually.

Ex. 4 Don has \$24 000 invested in a University fund that he hopes will grow to \$30 000 in 3 years. What interest rate, **compounded quarterly** will he need to invest at in order to achieve his goal?

HOMEWORK Pg. 423 # C3,3,5,&

Pg. 433 # 1,3d,5c,6,9,11,14 OR EXTRA WORKSHEET ON WEBSITE

"COMPOUND INTEREST IS THE EIGHTH WONDER OF THE WORLD. HE WHO UNDERSTANDS IT, EARNS IT ... HE WHO DOESN'T... PAYS IT."

Albert Einstein