6.7 - The Binomial Theorem

You have actually used this theorem before...

$$
\begin{aligned}
& (a+b)^{2} \\
= & (a+b)(a+b) \\
= & a^{2}+2 a b+b^{2}
\end{aligned}
$$

$$
\begin{aligned}
& (a+b)^{3} \\
= & (a+b)(a+b)(a+b) \\
= & \left(a^{2}+2 a b+b^{2}\right)(a+b) \\
= & a^{3}+a^{2} b+2 a^{2} b+2 a b^{2}+a b^{2}+b^{3} \\
= & 1 a^{3}+3 a^{2} b+3 a b^{2}+1 b^{3}
\end{aligned}
$$

Investigate the expansion of:

$$
\begin{aligned}
(a+b)^{4} & =(a+b)^{2}(a+b)^{2} \\
& \left.=\left(a^{2}+2 a b+b^{2}\right) a^{2}+2 a b^{2}+b^{2}\right) \\
& =a^{4}+2 a^{3} b+a^{2} b^{2}+2 a^{3} b+4 a^{2} b^{2}+2 a b^{3}+a^{2} b^{2}+2 a b^{3}+b^{4} \\
& =1 a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+1 b^{4}
\end{aligned}
$$

In general:

n value (exponent)	Coefficients	
0	$(a+b)^{n}$	1
1	$(a+b)^{1}=a+b$	

The Binomial Theorem

The binomial theorem is used to expand $(a+b)^{n}$.

$$
\begin{aligned}
& (\mathrm{a}+\mathrm{b})^{n} \\
& =\binom{n}{0} a^{n} b^{0}+\binom{n}{1} a^{n-1} b^{1}+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{n} a^{0} b^{n}
\end{aligned}
$$

The coefficients are the values of row n in Pascal's Triangle (weer en is the exponent to which the binomial is being raised).

Ex. 1 Expand each of the following :

$$
\begin{aligned}
& \text { a) }(a+b)^{6} \\
& =\binom{6}{0} a^{6} b^{0}+\binom{6}{1} a^{5} b^{1}+\binom{6}{2} a^{4} b^{2}+\binom{6}{3} a^{3} b^{3}+\binom{6}{4} a^{2} b^{4}+\binom{6}{5} a^{1} b^{5}+\binom{6}{6} a^{0} b^{6} \\
& =a^{6}+6 a^{5} b+15 a^{4} b^{2}+20 a^{3} b^{3}+15 a^{2} b^{4}+6 a b^{5}+b^{6}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) }(x-2)^{4} \quad \begin{array}{l}
a=x \\
b=-2
\end{array} \\
& =\binom{4}{0} x^{4}(-2)^{0}+\binom{4}{1} x^{3}(-2)^{1}+\binom{4}{2} x^{2}(-2)^{2}+\binom{4}{3} x^{1}(-2)^{3}+\binom{4}{4} x^{0}(-2)^{4} \\
& =x^{4}+4 x^{3}(-2)+6 x^{2}(4)+4 x(-8)+16 \\
& =x^{4}-8 x^{3}+24 x^{2}-32 x+16
\end{aligned}
$$

$$
\text { c) The first } 3 \text { terms of } \begin{aligned}
& a=3 x \\
&(3 x+2 y)^{5} \quad b=2 y \\
&=\binom{5}{0}(3 x)^{5}(2 y)^{0}+\binom{5}{1}(3 x)^{4}(2 y)+\binom{5}{2}(3 x)^{3}(2 y)^{2}+\ldots . \\
&= 1 \cdot 243 x^{5}+5 \cdot 81 x^{4} \cdot 2 y+10 \cdot 27 x^{3} \cdot 4 y^{2}+\ldots . \\
&= 243 x^{5}+810 x^{4} y+1080 x^{3} y^{2}+\ldots .
\end{aligned}
$$

$$
\begin{aligned}
& \text { d) } \begin{aligned}
&\left(x^{2}+\frac{4}{x}\right)^{3} \quad \begin{array}{l}
a \\
b
\end{array}=x^{2} \\
&=\left(\begin{array}{l}
3 \\
0 \\
0
\end{array}\right)\left(x^{2}\right)^{3}\left(\frac{4}{x}\right)^{0}+\binom{3}{1}\left(x^{2}\right)^{2}\left(\frac{4}{x}\right)^{1}+\binom{3}{2}\left(x^{2}\right)^{1}\left(\frac{4}{x}\right)^{2}+\ldots . \\
&= \\
&=x^{6}+3^{4} \cdot\left(\frac{4}{x}\right)+3 \cdot x^{2} \cdot \frac{16}{x^{2}}+\ldots . \\
&=x^{6}+12 x^{3}+48+\ldots .
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { e) The first four terms of } \\
& \begin{aligned}
\left(\sqrt{x}-\frac{2}{\sqrt{x^{3}}}\right)^{8} \quad \begin{aligned}
a & =\sqrt{x} \\
& =x^{\frac{1}{2}}
\end{aligned} \text {. }
\end{aligned} \\
& b=-\frac{2}{\sqrt{x^{3}}} \\
& =-2 x^{-\frac{3}{2}} \\
& \left.=\binom{8}{0}\left(x^{\frac{1}{2}}\right)^{8}\left(-2 x^{-3 / 2}\right)^{0}+\binom{8}{1}\left(x^{\frac{1}{2}}\right)^{7}\left(-2 x^{-\frac{3}{2}}\right)^{1}+\binom{8}{2}\left(x^{\frac{1}{2}}\right)^{6}\right)\left(-2 x^{-3 / 2}\right)^{2}+\binom{8}{3}\left(x^{\frac{1}{2}}\right)^{5}\left(-2 x^{-3 / 2}\right)^{3} \\
& =x^{4}+8 \cdot x^{7 / 2} \cdot(-2) x^{-3 / 2}+28 \cdot x^{3} \cdot 4 x^{-3}+56 x^{\frac{5}{2}} \cdot(-8) x^{-\frac{5}{2}}+\ldots \\
& =x^{4}-16 x^{2}+112-448 x^{-2}+\ldots . \\
& =x^{4}-16 x^{2}+112-\frac{448}{x^{2}}+\cdots
\end{aligned}
$$

Ex. 2 Write $\underbrace{1+12 x^{3}+54 x^{6}+108 x^{9}+81 x^{12}}_{S \text { terms }}$ in the form $(a+b)^{n}$
$1^{\text {st }}$ Term $\quad \therefore n=4$
$\binom{4}{0} a^{4}=1$
$a^{4}=1$
$\therefore a= \pm 1$

Last Term

$$
\left(1+3 x^{3}\right)^{4}
$$

$$
\begin{aligned}
\binom{4}{4} b^{4} & =81 x^{12} \\
b^{4} & =81 x^{12} \\
b & = \pm \sqrt[4]{81 x^{12}} \\
& = \pm 3 x^{3}
\end{aligned}
$$

$$
\begin{aligned}
& =3 x^{3} \quad= \pm 3 x^{3} \\
& \left(1-3 x^{3}\right)^{4} \\
& \binom{4}{1}(1)^{3}\left(-3 x^{3}\right) \\
& =4 \cdot 1 \cdot\left(-3 x^{3}\right) \\
& =-12 x^{3}
\end{aligned}
$$

$$
\begin{aligned}
& a=1, b=3 x^{3} \\
& = \\
& \therefore\left(1+3 x^{3}\right)^{4}
\end{aligned}
$$

Test: $a=1, b=3 x^{3}$

$$
\binom{4}{1}(1)^{3}\left(3 x^{3}\right)^{1}
$$

$$
=4 \cdot 3 x^{3}
$$

$$
=12 x^{3}
$$

$$
x^{\infty}
$$

HOMEWORK p.344 HC4, Sccef, 6, 1, 19

