6.5 -Geometric Series

$4,8,16,32, \ldots$ geometric sequence
$4+8+16+32+\ldots$ geometric series: The sum of the terms of a geometric sequence.

Derivation of the Geometric Series Formula

$$
\begin{gathered}
S_{n}=a+a r+a r^{2 \prime}+\ldots+a r r^{n 1} \\
r S_{n}=a r+a r^{2}+\ldots .+a r^{n-1}+a r^{n} \\
S_{n}-r S_{n}=a+\left(-a r^{n}\right) \\
\left.S_{n}(1-r)=a-a r^{n}\right) \\
S_{n}(1-r)=a\left(1-r^{n}\right) \\
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
\end{gathered}
$$

Geometric Series Formulas

Any term, t_{n}, can be found using: $\quad t_{n}=a r^{n-1}$
Any sum, S_{n}, can be found using:

$$
S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \quad \text { OR } \frac{a\left(1-r^{n}\right)}{1-r} \text {, where } r \neq 1
$$

and: $\quad a=$ first term
$r=$ common ratio
$\mathrm{n}=$ \# of terms

Ex. 1 Determine the indicated sum of each series.

$$
\text { a) } 4-8+16-\ldots, S_{9}
$$

$$
\begin{aligned}
r & =\frac{-8}{4} \\
& =-2 \\
a & =4 \\
n & =9
\end{aligned}
$$

b) $64+32+16+\ldots, S_{12}$

$$
\begin{aligned}
S_{n} & =\frac{a\left(1-r^{n}\right)}{(1-r)} \\
S_{q} & =\frac{4\left(1-(-2)^{9}\right)}{(1-(+2))} \\
& =\frac{4(1-(-5 / 2))}{3} \\
& =\frac{4(513)}{3} \\
& =684
\end{aligned}
$$

$$
\begin{align*}
& r=\frac{1}{2} \\
& a=64 \tag{n}\\
& n=12
\end{align*}
$$

$$
S_{12}=\frac{64\left(1-\left(\frac{1}{2}\right)^{12}\right)}{1-\frac{1}{2}}
$$

$$
=\frac{64\left(1-\frac{1}{4096}\right)}{\frac{1}{2}}
$$

$$
=64\left(\frac{4095}{4096}\right) \div \frac{1}{2}
$$

$$
=\frac{4095}{64} \times \frac{2}{1}
$$

$$
=\frac{4095}{32}
$$

Ex. 2 Determine the sum of the series.

$$
\begin{array}{rlrl}
& 2+6+18+\ldots+4374 \\
r & =\frac{t_{2}}{t_{1}} & \frac{\text { Find } n}{t_{n}}=a r^{n-1} \\
& =3 & 4374 & =2(3)^{n-1} \\
a & =2 & 2187 & =3^{n-1} \\
n & =? & 3^{7} & =3^{n-1} \\
& \therefore 7 & =n-1 \\
& & 8 & =n
\end{array}
$$

$$
\begin{aligned}
S_{n} & =\frac{a\left(1-r^{n}\right)}{1-r} \\
S_{8} & =\frac{2\left(1-3^{8}\right)}{1-3} \\
& =\frac{2(-6560)}{-2} \\
& =6560 \\
\therefore S_{8} & =6560
\end{aligned}
$$

Ex. 3 What if $r=1$? Suppose $a=5$ and $r=1$, find S_{10} for the series.

$$
\begin{array}{rlr}
5+5 & +5+5+\ldots . & S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \\
S_{10} & =5 \cdot 10 &
\end{array}
$$

Homework p. 407 \#С3, 2abdf, 3bf, 5bd, 6-12, 16

