## **6.3 - Geometric Sequences**

A sequence where there is a <u>common ratio</u>, r, between consecutive terms. A new term is generated by multiplying/dividing each term by the same number. L

eg. 5, 15, 45, 135, ... r = 3  $40, 20, 10, 5, 5/2, ... r = \frac{1}{2}$ 3, -6, 12, -24, 48, ... r = -2

## Geometric Sequence Formula

$$t_n = ar^{n-1}$$

where **a** is the first term, and **r** is the common ratio.

Ex. 1 Find  $t_7$  for each sequence.

a) 
$$t_n = -2(3)^{n-1}$$
  
 $n = 7$   
 $t_7 = -2(3)^{n-1}$   
 $= -2(3)^{n-1}$   
 $= -2(3)^{n-1}$ 

b)  $t_n = 100 \left(\frac{1}{4}\right)^{n-1}$   $\xi_2 = 100 \left(\frac{1}{4}\right)^k$   $= 100 \left(\frac{1}{4096}\right)$  $= \frac{25}{1024}$ 



a) 
$$3^{x-1} \cdot 3^{x+5}$$
  
=  $3^{2x+4}$   
b)  $32^{x+2} \cdot 8^{6}$  Make the bases the same!  
= $(2^{5})^{x+2} \cdot (2^{3})$   
=  $2^{5x+10} \cdot 2^{18}$   
=  $2^{5x+28}$ 

a) 5, 10, 20, 40, ...  

$$\alpha = 5$$
  
 $r = 2$   
 $\pm_n = 5 \cdot 2^{n-1}$ 

Ex. 3 Find  $t_n$  for each sequence.

$$t_n = \alpha r^{n-1}$$

b) 2, 6, 18, 54,....  

$$a=2$$
  
 $r=3$   $t_n = 2 \cdot 3^{n-1}$ 

c) 6561, 2187, 729, 243, ...  

$$a = 6561$$
  
 $r = \frac{2187}{6561}$   
 $= \frac{1}{3}$   
 $= 3^8 \cdot (3^{-1})^{-1}$   
 $= 3^{-1}$ 

d) 3, -12, 48, -192, ...  

$$a = 3$$
  $t_n = 3(-4)$   
 $r = -4$   
f) 1024, -256, 64, -16, ...  
 $a = 8$   $t_n = 8 \cdot 4^{n-1}$   
 $r = 4$   
f) 1024, -256, 64, -16, ...  
 $a = 8$   $t_n = 8 \cdot 4^{n-1}$   
 $r = 4$   
 $= 2^3 \cdot 2^{n-2}$   
 $= 2^{2n+1}$   
f) 1024, -256, 64, -16, ...  
 $a = 8$   $t_n = 8 \cdot 4^{n-1}$   
 $= 2^{2n+1}$   
 $= 2^{2n+1}$   
 $= 2^{2n+1}$   
 $= 2^{2n+1}$   
 $= 4^5 \cdot (-4)^n$   
 $= 4^5 \cdot (-4)^n$   
 $= 4^5 \cdot (-1)^n \cdot 4^{6-n}$ 

a) 5, 20, 80, ..., 81920  

$$a = 5$$
  $\pm_n = ar^{n-1}$   
Subin 81920 with  
 $a \neq r$  to solve  
 $81920 = 5 \cdot 4^{n-1}$   
 $16384 = 4^{n-1}$   
 $4^7 = 4^{n-1}$   
 $7 = n-1$   
 $n = 8$ 

: there are 8 terms

b) -19683, 6561, -2187, ..., -3  

$$Q = -19683$$
  
 $r = -\frac{1}{3}$   
 $\frac{3}{19683} = (-\frac{1}{3})^{n-1}$   
 $\frac{1}{6561} = (-\frac{1}{3})^{n-1}$  or  $(-\frac{1}{3})^8 = (-\frac{1}{3})^n$   
 $(-\frac{1}{3})^8 = (-\frac{1}{3})^{n-1}$   $(\frac{1}{3})^8 = \cdots$   
 $\therefore 8 = n-1$   
 $9 = n$   
 $\therefore$  There are 9 terms





## Ex. 6 Determine the value of x that makes each sequence:



Be careful of the wording in application problems:

Presently/Now ->  $t_1$ First year ->  $t_2$ 

## HOMEWORK p. 392 #1, 2bceh, 3ac, 5, 6, 8, 11, 16, 17, 20

or the following geometric sequences, find a fully simplified expression for tn.

- a) 729, -243, 81,....
- b) t4=64 and t5=32
- c) t2=4 and t4=64

Answers:

- a) tn=(-1)^(n-1)(3)^(7-n)
- b) tn=2^(10-n)
- c) tn=4^(n-1) OR tn=(-1)^n(4)^(n-1)

