6.3-Geometric Sequences

A sequence where there is a common ratio, r, between consecutive terms. A new term is generated by multiplying/dividing each term by the same

Geometric Sequence Formula

$$
t_{n}=a r^{n-1}
$$

where a is the first term, and r is the common ratio.

Ex. 1 Find t_{7} for each sequence.
a) $t_{n}=-2(3)^{n-1}$

$$
\begin{aligned}
n=7 & =-2(3)^{7-1} \\
t_{7} & =-2(3)^{6} \\
& =-1458
\end{aligned}
$$

b) $t_{n}=100\left(\frac{1}{4}\right)^{n-1}$

$$
\begin{aligned}
t_{7} & =100\left(\frac{1}{4}\right)^{6} \\
& =100\left(\frac{1}{4096}\right)
\end{aligned}
$$

$$
=\frac{25}{1024}
$$

$$
\begin{aligned}
& \text { number. } \\
& x^{\times 3} \times 3 \times 3 \\
& \text { eg. } 5,15,45,135, \ldots \quad r=3 \\
& r=\frac{t_{2}}{t_{1}} \\
& \begin{array}{cc}
40^{x \frac{1}{2}}, 20^{x \frac{1}{2}}, 10,5,5 / 2, \ldots & r=\frac{1}{2} \\
33^{x-2},-66^{r^{-2}}, 12^{x^{-2}},-24,48, \ldots & r=-2
\end{array}
\end{aligned}
$$

Ex. 2 Simplify the powers.
a) $3^{x-1} \cdot 3^{x+5}$
$=3^{2 x+4}$
b) $32^{x+2} \cdot 8^{6}$

Make the bases the same'.
$=\left(2^{5}\right)^{x+2} \cdot\left(2^{3}\right)^{6}$
$=2^{5 x+10} \cdot 2^{18}$
$=2^{5 x+28}$

Ex. 3 Find t_{n} for each sequence.
This means find the general formula which works to find any term in the sequence. Must be simplified.
a) $5,10,20,40, \ldots$
$\begin{array}{ll}a=5 \\ r=2\end{array} \quad t_{n}=5 \cdot 2^{n-1}$
$t_{n}=a r^{n-1}$
b) $2,6,18,54, \ldots \ldots$
$\begin{aligned} & a=2 \\ & r=3\end{aligned} \quad t_{n}=2 \cdot 3^{n-1}$
c) $6561,2187,729,243, \ldots$
$a=6561$
$r=\frac{2187}{6561}$
$=\frac{1}{3}$

$$
\begin{aligned}
t_{n} & =6561 \cdot\left(\frac{1}{3}\right)^{n-1} \\
& =3^{8} \cdot\left(3^{-1}\right)^{n-1} \\
& =3^{8} \cdot 3^{-n+1} \\
& =3^{-n+9}
\end{aligned}
$$

d) $3,-12,48,-192, \ldots$

f) $1024,-256,64,-16, \ldots$
$a=1024 \quad t_{n}=1024 \cdot\left(-\frac{1}{4}\right)^{n-1}$
$r=-\frac{1}{4}$
$=4^{5} \cdot(-4)^{-n+1}$
$=4^{5}(-1)^{-n+1} \cdot 4^{-n+1}$
$=(-1)^{1-n} \cdot 4^{6-n}$

Ex. 4 Determine the number of terms in each sequence.
a) $5,20,80, \ldots, 81920$

$$
\begin{aligned}
& a=5 \\
& r=4
\end{aligned} \quad t_{n}=a r^{n-1}
$$

Sub in 81920 with
a of r to solve

$$
\begin{aligned}
81920 & =5 \cdot 4^{n-1} \\
16384 & =4^{n-1} \\
4^{7} & =4^{n-1} \\
\therefore \quad 7 & =n-1 \\
n & =8
\end{aligned}
$$

\therefore There are 8
terms
b) $-19683,6561,-2187, \ldots,-3$

$$
\begin{aligned}
& a=-19683 \\
& r=-\frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
& 1,-218 /, \ldots,-3 \\
&-3=-19683\left(-\frac{1}{3}\right)^{n-1} \\
& \frac{3}{19683}=\left(-\frac{1}{3}\right)^{n-1} \\
& \frac{1}{6561}=\left(-\frac{1}{3}\right)^{n-1} \quad \text { OR } \\
&\left(-\frac{1}{3}\right)^{8}=\left(-\frac{1}{3}\right)^{n-1} \quad\left(\frac{1}{3}\right)^{8}=\cdots \\
& \therefore 8=n-1 \\
& 9=n
\end{aligned}
$$

\therefore There are 9 terms

Ex. 5 Determine a, r, and t_{n} for the geometric sequence that has:

$$
\begin{aligned}
& \underbrace{t_{5}=324 \text { and } t_{9}}_{9-5=4} \\
& r^{4}=\frac{26244}{324} \\
& r^{4}=81 \\
& r= \pm \sqrt[4]{81} \\
& r= \pm 3
\end{aligned}
$$

$$
\begin{aligned}
t_{n} & =a r^{n-1} \\
\text { Sub } t_{n} & =324 \\
n & =5 \\
324 & =a(\pm 3)^{5-1} \\
324 & =a(\pm 3)^{4} \\
324 & =81 a \\
4 & =a
\end{aligned}
$$

$$
t_{n}=4(-3)^{n-1}
$$

OR

$$
t_{n}=4 \cdot 3^{n-1}
$$

b) $t_{4}=-8 \quad$ and $t_{7}=1$
$r^{3}=\frac{1}{-8}$
$r=-\frac{1}{2}$

$$
\begin{aligned}
\text { Sub } t_{n} & =1 \\
n & =7 \\
r & =-\frac{1}{2} \\
1 & =a\left(-\frac{1}{2}\right)^{7-1} \\
1 & =a\left(-\frac{1}{2}\right)^{6} \\
1 & =a\left(\frac{1}{64}\right) \\
64 & =a
\end{aligned}
$$

$$
\begin{aligned}
t_{n} & =64 \cdot\left(-\frac{1}{2}\right)^{n-1} \rightarrow\left(-2^{-1}\right)^{n-1} \\
& =2^{6}(-2)^{1-n} k \\
& =2^{6}(-1)^{1-n}(2)^{1-n} \\
& =(-1)^{1-n} \cdot 2^{7-n} \\
t_{n} & =(-1)^{1-n} \cdot 2^{7-n}
\end{aligned}
$$

Ex. 6 Determine the value of x that makes each sequence:
a) geometric

$$
\left.r=\frac{6}{2} \stackrel{2,6,5 x-2}{2}=18^{\bigcup_{x 3}=18} \begin{array}{rl}
=3 x-2 & =18 \\
& 5 x
\end{array}\right)=20
$$

b) arithmetic

$$
d=6-(x-4) \quad d=x-6
$$

Differences must be
the same

$$
\begin{aligned}
6-(x-4) & =x-6 \\
6-x+4 & =x-6 \\
16 & =2 x \\
8 & =x
\end{aligned}
$$

Be careful of the wording in application problems:

$$
\text { Presently/Now -> } t_{1}
$$

$$
\text { First year -> } t_{2}
$$

HOMEWORK
 p. 392 H1, 2bceh, 3cc, 5, 6, 3, 11, 16, 17, 20

or the following geometric sequences, find a fully simplified expression for tn.
a) $729,-243,81, \ldots$.
b) $+4=64$ and $+5=32$
c) $\dagger 2=4$ and $\dagger 4=64$

Answers:
a) $t n=(-1)^{\wedge}(n-1)(3)^{\wedge}(7-n)$

[
b) $t n=2^{\wedge}(10-n)$
c) $\dagger n=4^{\wedge}(n-1) O R \quad t n=(-1)^{\wedge} n(4)^{\wedge}(n-1)$

