6.2 - Arithmetic Sequences

A sequence where there is a <u>common difference</u>, d, between consecutive terms. The same value is added or subtracted to a term to generate the next term.

eg. 3, 5, 7, 9, 11, ...
$$d = 2$$

5, 1, -3, -7, ... $d = -4$
0, 5, 10, 15, 20,.. $d = -4$

Arithmetic Sequence Formula

$$t_n = a + (n - 1)d$$

where a is the first term and d is the common difference

$$\alpha = \xi$$

Ex. 1 Determine t_n for each.

This means find the general formula which works to find any term in the sequence. Must be simplified.

a) 7, 3, -1, -5, ...

$$a = 7 \qquad t_n = a + (n-1)d \qquad a = -5 \qquad t_n = a + (n-1)d \\
d = -4 \qquad = 7 + (n-1)(-4) \qquad d = 2 \qquad = -5 + (n-1)(2) \\
= 7 + (n-1)(-4) \qquad d = 2 \qquad = -5 + 2n - 2$$

$$t_n = 11 - t_n$$

b) -5, -3, -1, 1, ...

$$a = -5$$
 $t_n = 0 + (n-1)d$
 $d = 2$
 $= -5 + (n-1)(2)$
 $t_n = 2n-7$

Ex. 2 Determine the # of terms in each sequence.

a) 2,5,8,...,155

$$a = 2$$
 $b = 3$
 $b = 5$
 $b = 5$

a) 2, 5, 8, ..., 155

b) 1, -1, -3, ..., -199

$$a = 2$$
 $b = 3$
 $a = 1$
 $a = 1$

Ex. 3 Insert two numbers between 17 and 59, so that the four numbers form an arithmetic sequence.

4. Determine, a, d, and t_n for each arithmetic sequence.

a)
$$t_4 = 13$$
, $t_{17} = 39$

$$13 + erm 5$$

$$(17 - 4)$$

$$t_n = a + (n-1)d$$

Using $t_n = 13$
 $13 = a + (4-1)(2)$
 $13 = a + 6$
 $7 = a$

$$L_{n} = a + (n-1)d$$

= 7 + (n-1)(2)
 $L_{n} = 2n+5$

b)
$$t_{10} = -67$$
, $t_{43} = -298$

$$-67 + 33d = -298$$

$$33d = -231$$

$$d = -7$$

p. 385 #3abfh, 4bc, 6, 7, 9ac, 10ac, 11ac, 13, 15, 20, 21

