6.1 - Sequences and Recursive Procedures

Sequence: A set of numbers arranged in a particular order.

Term: Each number (or letter) in a sequence is referred to as a term. We use t_1 , t_2 , etc. to denote term numbers.

3,5,7,9 *finite sequence*

$$t_1 = 3$$

$$-1, -4, -7, -10, ... infinite sequence$$

In some cases, the pattern of a sequence can be defined using a general rule (equation). This rule is dependent on the term #, n, and describes how to generate t_n (the n^{th} term).

Note: $n \ge 1$ since values of n are natural numbers $\{1,2,3,4...\}$

Ex.1 Find the first 3 terms of each sequence.

a)
$$t_n = 3n - 2$$

$$t_{-3(1)-2}$$

$$t_2 = 3(2) - 2$$

$$t_3 = 3(3) - 2$$
=7

b)
$$t_n = n^2 - 3$$

$$L_1 = (1)^2 - 3$$

= -2

$$t_2 = (2)^2 - 3$$

$$t_3 = (3)^2 - 3$$

These formulas are called <u>explicit formulas</u>. They can be used to find any term by using the term #, n.

t_n can also be written using function notation: f(n)

Ex. 2 Given f(n), determine t_{10} .

a)
$$f(n) = 2n^2 - n$$

$$f(10) = 2(10)^{2} - 10$$

$$= 200 - 10$$

$$= 190$$

b)
$$f(n) = 5 - n$$

Sequences can be represented graphically. The independent variable is n, the term #, and the dependent variable is t_n or f(n), the value of the term.

Note: Since values of n are Natural Numbers {1,2,3,4...}, the graphs are always a series of points, rather than a line or curve.

Ex. 3 Graph the first 3 terms of each sequence.

a)
$$t_n = 2n + 1$$

$$\xi^{5} = 5(5) + 1$$

b)
$$f(n) = (n-2)^2$$

$$f(z) = \emptyset$$

$$f(1) = 1$$

$$f(2) = 0$$

$$f(3) = 1$$

QUADRATIC

Ex. 4 Determine a formula for each sequence.
a)
$$3, 5, 7, 9, \dots$$
 $\downarrow_{\sim} = 2 + 1$

c)
$$2,6,10,14,...$$
 $t_n = t_n - 2$

d)
$$4, 1, -2, -5, \dots$$
 $+ = -3_n + 7$

b)
$$4, 8, 12, 16, \dots$$
 $t_n = t_n$

c) $2, 6, 10, 14, \dots$ $t_n = t_n - 2$

d) $4, 1, -2, -5, \dots$ $t_n = -3n + 7$

e) $2, 4, 8, 16, \dots$ $t_n = 2^n$

f) $5, 25, 125, 625, \dots$ $t_n = 5^n$

$$t_n = t_n$$

$$t_{n-1} = t_n$$

$$t_{n-2} = t_n$$

$$t_{n-3} = t_n$$

f) 5, 25, 125, 625,...
$$t_2 = 5^{-1}$$

g)
$$2, 6, 18, 54, 162,...$$
 $= 2 \cdot 3^{n-1}$

h)
$$\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots$$
 $\xi_n = \frac{1}{n+1}$

i) -1, 2, -3, 4, -5,...
$$+ = (-1)^{N} \cdot N$$

g)
$$2, 6, 18, 54, 162, \dots$$
 $t_n = 2 \cdot 3^{n-1}$ $\begin{cases} t_1 = 2 \\ t_2 = 2 \cdot 3 \end{cases}$
h) $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots$ $t_n = \frac{1}{n+1}$ $\begin{cases} t_1 = 2 \\ t_2 = 2 \cdot 3 \end{cases}$ $\begin{cases} t_2 = 2 \cdot 3 \\ t_3 = 2 \cdot 3 \cdot 3 \end{cases}$ $\begin{cases} t_3 = 2 \cdot 3 \cdot 3 \\ t_4 = 2 \cdot 3 \cdot 3 \end{cases}$ $\begin{cases} t_5 = 2 \cdot 3 \cdot 3 \\ t_6 = 2 \cdot 3 \cdot 3 \end{cases}$ $\begin{cases} t_6 = 2 \cdot 3 \cdot 3 \\ t_7 = 2 \cdot 3 \cdot 3 \end{cases}$ $\begin{cases} t_7 = 2 \cdot 3 \cdot 3 \\ t_7 = 2 \cdot 3 \cdot 3 \end{cases}$ $\begin{cases} t_7 = 2 \cdot 3 \cdot 3 \\ t_7 = 2 \cdot 3 \cdot 3 \cdot 3 \end{cases}$

Recursion formulas are another way to describe the terms of a sequence. They require the use of previous terms to generate new terms.

Ex. 5 Use the given recursion formula to generate the first 4 terms.

a)
$$t_1 = 4$$
, $t_n = 3 - 4t_{n-1}$

$$t_2 = 3 - 4t_1$$
 $t_3 = 3 - 4t_2$ $t_4 = 3 - 4(53)$
= 3 - 4(4) = 3 - 4(-13) = -217
= 3 - 16 = 55
= -13

b)
$$t_1 = 2$$
, $t_2 = 3$, $t_n = 2t_{n-2} - 3t_{n-1}$

$$t_3 = 2t_1 - 3t_2$$

= 2(2) - 3(3)
= 4 - 9
= -5

$$t_4 = 2t_2 - 3t_3$$
 $= 2(3) - 3(-5)$
 $= -6 + 15$
 $= 21$

c)
$$f(1) = 3$$
, $f(2) = -1$, $f(n) = f(n-1) + 2f(n-2)$

function notation.

$$f(3) = f(3-1) + 2f(3-2)$$

$$= f(2) + 2f(1)$$

$$= -1 + 2(3)$$

$$= 5$$

$$f(3) = f(3-1) + 2f(3-2) = f(2) + 2f(1) = -1 + 2(3) = 5 = 3 f(4) = f(4-1) + 2f(4-2) = f(3) + 2f(2) = 5 + 2(-1) = 3$$

Ex.6 Write a recursion formula for the Fibonacci Sequence.

$$1, 1, 2, 3, 5, 8, 13, 21, ...$$
 TEDTALK

 $t_n = t_{n-1} + t_{n-2}, n \ge 3$

Where $t_1 = 1$
 $t_2 = 1$

Ex.7 Write an explicit formula for each recursion formula.

a)
$$t_{1}=3$$
, $t_{n}=t_{n-1}+4$

b) $t_{1}=-2$, $t_{n}=3t_{n-1}$
 $t_{2}=3+4$
 $=7$
 $t_{3}=7+4$
 $=11$
 $t_{4}=11+4$
 $t_{4}=-11$
 $t_{5}=-18$

b) $t_{1}=-2$, $t_{n}=3t_{n-1}$
 $t_{2}=3(-2)$
 $t_{3}=3(-6)$
 $t_{3}=3(-6)$
 $t_{4}=11+4$
 $t_{5}=-18$
 $t_{5}=-18$
 $t_{7}=-18$
 $t_{7}=-18$
 $t_{7}=-18$
 $t_{7}=-18$
 $t_{7}=-18$
 $t_{7}=-2\cdot 3^{n-1}$

HOMEWORK

p.360 # 1adef, 3, 4, 8, 13 p.370 # 1abde, 2ac, 3, 8af, 9ab, 16

