6.1 - Sequences and Recursive Procedures

Sequence: A set of numbers arranged in a particular order.

Term: Each number (or letter) in a sequence is referred to as a term. We use t_{1}, t_{2}, etc. to denote term numbers.
$t_{1}=3-3,5,7,9$ finite sequence

$$
-1,-4,-7,-10, \ldots \text { infinite sequence }
$$

In some cases, the pattern of a sequence can be defined using a general rule (equation). This rule is dependent on the term \#, n, and describes how to generate t_{n} (the $\mathrm{n}^{\text {th }}$ term).

Note: $n \geq 1$ since values of n are natural numbers $\{1,2,3,4 \ldots\}$

Ex. 1 Find the first 3 terms of each sequence.
a) $t_{n}=3 n-2$
b) $t_{n}=n^{2}-3$
$t_{1}=3(1)-2$
$t_{1}=(1)^{2}-3$
$=1$

$$
=-2
$$

$$
t_{2}=3(2)-2
$$

$$
=4
$$

$$
t_{2}=(2)^{2}-3
$$

$$
=1
$$

$t_{3}=3(3)-2$
$=7$
$t_{3}=(3)^{2}-3$

$$
=6
$$

These formulas are called explicit formulas. They can be used to find any term by using the term \#, n.

```
\(t_{n}\) can also be written using function notation: \(f(n)\)
```

Ex. 2 Given $f(n)$, determine t_{10}.
a) $f(n)=2 n^{2}-n$

$$
f(10)=2(10)^{2}-10
$$

$$
=200-10
$$

b) $f(n)=5-n$
$\begin{aligned} f(10) & =5-10 \\ & =-5\end{aligned}$

$$
=190
$$

Sequences can be represented graphically. The independent variable is n, the term \#, and the dependent variable is t_{n} or $f(n)$, the value of the term.

Note: Since values of n are Natural Numbers $\{1,2,3,4 \ldots\}$, the graphs are always a series of points, rather than a line or curve.

Ex. $3 \quad$ Graph the first 3 terms of each sequence.
a) $t_{n}=2 n+1$

$=3$
$=7$
$t_{2}=2(2)+1$

Linear
b) $f(n)=(n-2)^{2}$
$f(1)=1$
$f(2)=0$
$f(3)=1$

Quapratic

Ex. 4 Determine a formula for each sequence.
$t_{1}, t_{3} \stackrel{\stackrel{N}{2}^{+2} \curvearrowright^{+2}}{3,5,7,9, \ldots} \begin{gathered}t_{2} \\ t_{2}\end{gathered} \quad t_{N}=2 n+1$
b) $\underbrace{4,8,12}_{+4} \underbrace{16}_{+4}, \ldots \quad t_{n}=4_{n}$
c) $\underbrace{2,6}_{+4}, 10,14, \ldots \quad t_{n}=4_{w}-2$
d) $\underbrace{4,1,-2,-5, \ldots}_{-3} \quad, \quad t_{n}=-3 n+7$

check!	
n	t_{n}
1	2
2	6
3	10

e) ${\underset{x}{2}}_{2,4,8,16,16, \ldots}^{\underbrace{}_{x 2}} \quad t_{n}=2^{n} \quad\left\{, 25,125,625, \ldots t_{n}=5^{N} \quad\left\{\begin{array}{l}t_{1}=2 \\ t_{2}=2.2 \\ t_{3}=2.2 .2\end{array}\right.\right.$
g) $\underset{\times 3}{2,6} \underset{\times 3}{1}, \underset{\sim}{18}, 54,162, \ldots . t_{n}=2 \cdot 3^{n-1}$

$$
\text { h) } \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots \quad t_{n}=\frac{1}{n+1}
$$

$$
\left\{\begin{array}{l}
t_{1}=2 \\
t_{2}=2 \cdot 3 \\
t_{3}=2 \cdot 3 \cdot 3 \\
t_{N}=2 \cdot 3^{N-1}
\end{array}\right\}
$$

Recursion formulas are another way to describe the terms of a sequence. They require the use of previous terms to generate new terms.

Ex. 5 Use the given recursion formula to generate the first 4 terms.
a) $t_{1}=4, \quad t_{n}=3-4 t_{n-1}$

$$
\begin{aligned}
t_{2} & =3-4 t_{1} & t_{3} & =3-4 t_{2} \\
& =3-4(4) & & =3-4(-13) \\
& =3-16 & & =55 \\
& =-13 & &
\end{aligned}
$$

b) $t_{1}=2, t_{2}=3, t_{n}=2 t_{n-2}-3 t_{n-1}$

$$
\begin{aligned}
t_{3} & =2 t_{1}-3 t_{2} & t_{4} & =2 t_{2}-3 t_{3} \\
& =2(2)-3(3) & & =2(3)-3(-5) \\
& =4-9 & & -6+15 \\
& =-5 & & =21
\end{aligned}
$$

c) $f(1)=3, \quad f(2)=-1, \quad f(n)=f(n-1)+2 f(n-2)$ function notation.

$$
\begin{aligned}
f(3) & =f(3-1)+2 f(3-2) & f(4) & =f(4-1)+2 f(4-2) \\
& =f(2)+2 f(1) & & =f(3)+2 f(2) \\
& =-1+2(3) & & =5+2(-1) \\
& =5 & & =3
\end{aligned}
$$

Ex. 6 Write a recursion formula for the Fibonacci Sequence.

$$
\begin{aligned}
& 1,1,2,3,5,8,13,21, \ldots \text { Tedtalk } \\
& t_{n}=t_{n-1}+t_{n-2}, n \geq 3
\end{aligned}
$$

where $t_{1}=1$

$$
t_{2}=1
$$

Ex. 7 Write an explicit formula for each recursion formula.
a) $t_{1}=3, t_{n}=t_{n-1}+4$

$$
\begin{aligned}
t_{2} & =3+4 \\
& =7 \\
t_{3} & =7+4 \\
& =11 \\
t_{4} & =11+4 \\
& =15
\end{aligned}
$$

$3,7,11,15$,
$t_{n}=4 n-1$

$$
\left.\begin{array}{rl}
& \text { b) } t_{1}=-2, t_{n}=3 t_{n-1} \\
t_{2} & =3(-2) \\
& =-6 \\
t_{3} & =3(-6) \\
& =-18 \\
t_{4} & =3(-18) \\
& =-54 \\
-2 \\
-2,-6,-18,-54 \\
-2 \cdot 3 \cdot 3 \\
-2 \cdot 3 \cdot 3 \cdot \\
t_{n} & =-2 \cdot 3^{n-1}
\end{array}\right\} \begin{aligned}
& \text { Maybe } \\
& -2 \cdot 3^{n-1}
\end{aligned}
$$

HOMEWORK p.360 ${ }^{\text {H }}$ 1adef, 3, 4, 8, 13 p.370 4 1abde, 2ac, 3, 3af, 9ab, 16

