5.6 - Applications of Trig Functions

Ex 1 Sally was swinging back and forth in front of a motion detector. Her distance from the detector was modeled by the following graph:

- What is the equation of the axis? \qquad Counting
Algebraically:

$$
\begin{aligned}
c & =\frac{\max +\min }{2} \\
& =\frac{11+1}{2}
\end{aligned} \quad \subset C=6
$$

- What is the amplitude? \qquad Counting

$$
\text { Algebraically: } \begin{aligned}
a & =\max -\min \\
& =\frac{11-1}{2}
\end{aligned} \rightarrow a=5
$$

- What is the period of the function 85
- For how long was Sally swinging? 28 s
- Describe the position of the swing when she stops:
Middle / Bottom of her swing
- How close did Sally get to the motion detector?
- At $t=7 \mathrm{sec}$ would it be safe to run between Sally and the motion detector? Explain why or why not.

$$
\frac{\text { Visually }}{\text { Approx } 2.5 \mathrm{ft}}
$$

Algebraically

$a=5$
$c=6$
$d=5 \sin [45(t)]+6$
$d=0$
sub $t=7$
$d=5 \sin (45 \cdot 7)+6$
$k=\frac{360}{8}$
$d=2.46$
$\therefore 1 t$ will be
Fromeqn
a close-call,
but safer since
she is moving
away

Ex 2. The rodent population in a region varies approximately according to the equation $r(t)=1200+300 \sin 90 t$, where t is the number of years since $1970 \mathrm{and} / r$ is the number of rodents.

$$
\rightarrow r(t)=300 \sin 90 t+1200
$$

$$
\begin{aligned}
& a=300 \\
& c=1200
\end{aligned}
$$

a) Find the maximum and minimum number of rodents.

$$
\begin{aligned}
\max & =1200+300 & \text { min } & =1200-300 \\
& =1500 & & =900
\end{aligned}
$$

b) What is the period of the function?

$$
\begin{aligned}
\text { period } & =\frac{360}{90} \\
& =4
\end{aligned}
$$

c) How many rodents could be expected in 2018?

$$
\begin{aligned}
& t=2018-1970 \\
& =48 \\
& r(t)=300 \sin 90 t+1200 \\
& r(48)=300 \sin (90 \cdot 48)+1200 \\
& =1200 \\
& \therefore \text { The population } \\
& \text { will be } 1200 \text { in } 2018
\end{aligned}
$$

Ex 3. A weight is supported by a spring. The weight rests 50 cm above a tabletop. The weight is pulled down 25 cm and released at time $t=0$. This creates a periodic up-and-down motion. It takes 1.6 s for the weight to return to the low position each time. Determine an equation for the sinusoidal function.

Ex4. A ferris wheel has a radius of 7 m . The centre of the wheel is 8 m above the ground. The Ferris wheel rotates at a constant speed of 15%. There is only one red seat on the Ferris wheel. period $=\frac{360}{15}$

$=24 \mathrm{sec}$.

$K=15$

$$
\begin{aligned}
& \operatorname{Max}=15 \\
& \operatorname{Min}=1
\end{aligned}
$$

a) Graph one rotation of the wheel, as a function of height over time in seconds, if the red seat starts at the maximum height.

b) Determine an equation of a cosine function which describes the height of the red seat, where h is the height in metres and t is the time in seconds.

$$
h=7 \cos 15 t+8
$$

c) Determine an equation of a sine function which describes the height of the red seat where h is the height in metres and t is the time in seconds.

$$
\begin{gathered}
h=-7 \sin [15(t-6)]+8 \\
\text { OR } \\
h=7 \sin [15(t+6)]+8
\end{gathered}
$$

Homework: p 321 \# 16 5.6 Handout

