5.3 Stretches of Periodic Functions

Vertical Compressions and stretches
Given $y=a f(x)$, when :
$|a|>1$
$0<|a|<1$

"a" is called the amplitude

$$
\begin{aligned}
& \text { ex: } \\
& y=2 \sin x \\
& \text { Vertical stretch } \\
& \text { by? }
\end{aligned}
$$

$$
y=\frac{1}{3} \cos x
$$

$$
\begin{aligned}
& 9 \\
& \text { vertical compression } \\
& \text { by } 3
\end{aligned}
$$

Ex 1 Sketch the following for one full cycle.
a) $y=2 \sin x$
b) $y=\frac{1}{2} \sin x$
c) $y=3 \cos x$
d) $y=\frac{1}{3} \cos x$
$(y=\sin x)$

For the above examples:
Does the amplitude change? $\ / E S$ Does the period change? NO

Horizontal Stretches or Compressions

Given $y=f(k x)$, when:
Remember, k is INSIDE the function and behaves OPPOSITE from what you would expect.

Because you are stretching/compressing horizontally, the period would change.

$$
\text { PERIOD }=\frac{360}{}^{\circ}
$$

$$
\begin{aligned}
& \text { Recall: } \\
& \text { scale }=\frac{\text { period }}{4}
\end{aligned}
$$

Ex 2 Sketch the following for one full cycle.

For these examples:
Does the amplitude change? Does the period change?

Ex 3 Graph one cycle of $y=2 \sin \left(\frac{1}{2} x\right)$

$$
\begin{aligned}
\text { period } & =\frac{360}{\frac{1}{2}} \\
& =720 \\
\text { spacing } & =\frac{720}{4} \\
& =180 \\
\text { amplitude } & =2
\end{aligned}
$$

Homework = p. 309 1ac, 2bd, 3 (and sketch a,c,f,f), p 312 \$18

