5.1 - Modelling Periodic Behaviour

Periodic Functions

- A function is periodic if it has a pattern of y-values that repeat at regular intervals
- One complete pattern is called a cycle.
- The horizontal length of one cycle is called the period:
- Half the vertical length of one cycle is called the amplitude amplitude $=($ max value $-\min$ value $) \div 2$

Ex 1 - For the graph, determine:
a) $\#$ complete cycles $=3$
b) period $=6$
c) max value $=5$
d) \min value $=-5$
e) amplitude
f) domain

$$
\begin{aligned}
a & =\frac{m a x-n i n}{2} \\
& =\frac{5-(-5)}{2} \\
& =5^{2}
\end{aligned}
$$

$\{x \in \mathbb{R} \mid-10 \leq x \leq 8\}$
g) range

$$
\{y \in \mathbb{R} \mid-5 \leq y \leq 5\}
$$

h) $f(2)={ }_{\sigma}$
$f(-4)=\varnothing$

$$
\begin{aligned}
\text { NOTE: } F^{h} & \text { axis (imaginary middle) } \\
\frac{\text { max }^{2} \text { min }}{2} & =\frac{5+(-5)}{2} \\
& =0 \quad \therefore y=0
\end{aligned}
$$

$f(-1)=5$

Ex 2 - For the graph, determine: 3
a) period $=9$
b) max value $=7$
c) \min value $=-3$
d) amplitude
e) domain

$$
\begin{aligned}
& \text { determine: } \\
& \begin{array}{c}
y=\frac{\text { max }}{2} \\
=\frac{7+(-3)}{2} \\
=2
\end{array} \\
& =\frac{\text { max }}{2} \\
& =\frac{7-(-3)}{2} \\
& =5
\end{aligned}
$$

$\{x \in \mathbb{R}\}$
f) range
$\{y \in \mathbb{R} \mid-3 \leq y \leq 7\}$
g) $f(-3)=3$

$$
\begin{aligned}
& \text { How many periods? } \\
& f(24)=f(24-2.9) \\
& \\
& = \\
& =f(24-18) \\
& \\
& =f(6) \\
& f(-1) \\
& =0 \\
& =0
\end{aligned} \quad \begin{aligned}
f(-19) & =f(-19+2.9) \\
& =f(-1) \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
f(341) & =f(341-37 \cdot 9) \\
& =f(8) \\
& =0
\end{aligned}
$$

Ex. 3

Height on a Ferris Wheel

a) Determine the period of the function. What does the period represent in the context of the question?

$$
\begin{aligned}
& 85 \text { The time it takes for one complete rotation } \\
& \text { of the ferris wheel. }
\end{aligned}
$$

b) Determine the amplitude of the function.
$M_{a x}=7$ What does the amplitude represent in the context of the question?
$\begin{array}{ll}M_{M_{1}}=7 & a=\frac{\text { maximin }}{2} \quad \text { The radius of the ferris wheel }\end{array}$

$$
\begin{aligned}
& =\frac{7-1}{2} \\
& =3 .
\end{aligned}
$$

c) Determine the speed of the Ferris Wheel. Hint

$$
\therefore \text { The speed is } 2.4 \mathrm{~m} / \mathrm{s}
$$

d) On the grid above sketch the height over time of another Ferris Wheel, for 3 full cycles, that boards at the same height, has a radius of of 2 and completes one full rotation in 6 seconds.

$$
\begin{aligned}
& \text { period } 6 \\
& \text { amplitude } 2 \\
& \min =1 \\
& \max =5
\end{aligned}
$$

$$
\begin{aligned}
& s=\frac{d}{t} \quad \quad \quad \text { Cir }=\frac{6 \pi}{8 s} \quad \frac{s \pi r}{2 \pi r} \\
& \begin{array}{ll}
=\frac{\text { lciromiferenco }}{8 \mathrm{~s}}=2.4 \mathrm{~m} / \mathrm{s} & \\
& =2 \pi(3) \\
& =6 \pi
\end{array}
\end{aligned}
$$

Homework - p. 290 \#1-3, 6, 8-11, 14, 22

Many things in daily life repeat with a predictable pattern, such as weather, tides, and hours of daylight.

This periodic graph represents a normal heartbeat.

