STATION A

1. Evaluate the following using exponent laws (write your final answer with positives exponents only).

a.
$$\left(\frac{2}{5}\right)^{-3}$$

$$5\sqrt{\frac{1}{32}}^2$$

$$_{c.} 16^{\frac{3}{4}} + \sqrt[3]{8}$$

a.
$$\left(\frac{2}{5}\right)^{-3}$$
 b. $\sqrt[5]{\frac{1}{32}}^2$ c. $16^{\frac{3}{4}} + \sqrt[3]{8}$ d. $\frac{2^3 - 2^{-3}}{2^2 \div 2^4}$

STATION B

1. Simplify the following using exponent laws (write your final answer with positives exponents only).

$$(2^{x+1})(4^{x+1})(8^{x+1}) \div 64^x$$

b.
$$\sqrt{\frac{x^3}{\sqrt{x}}}$$

$$\int_{c} \left(\frac{3x^2}{y^{-1}} \right)^{-2} \left(\frac{2y^2}{3x} \right)^3$$

$$d \left(\frac{9a^3b^{-5}c^2}{ab^{-1}} \right)^{-\frac{1}{2}} \div \left(\frac{b^3c}{2a} \right)^3$$

STATION C

Solve the following using the exponent rules.

$$3^{x-1} = 27^{2x+3}$$

$$81^{x+3} = 9\sqrt{3}$$

$$3^{x-1} = 27^{2x+3} 81^{x+3} = 9\sqrt{3} 3^{x+2} + 3^x = 270$$

STATION D

- 1. HCG, a chemical found in pregnant women, doubles every 55 hours for the first three months of pregnancy. The level of HCG is 5 mIU/ml in a women that is 3 weeks pregnant. How much HCG is there in her blood when she is 11 weeks pregnant?
- 2. Thorium-227 has a half-life of 18.4 days. How much time will a 50-mg sample take to decompose to 12.5 mg?

STATION E

1

Relation	Domain	Range
$y = 3^{x+2} - 1$		

2. Complete the table.

Original Function	Equation of Transformed Function	Transformations (in order)
y=2×		 Reflection in the y-axis Vertical stretch by a factor of 7 Horizontal translation left 3
		 Vertical translation down 5

- 3. Given the exponential function $f(x) = 30(2)^{3x} + 5$
- 1. The equation of the asymptote _____
- 2. The y-int or original amount _____
- 3. The transformations occurring:

STATION F

Annika was working with an expression of the form $(something)^{-3}$. Partway down the page you see this $\frac{2(x^2y)^{12}}{125x}$. What expression could she have been working with?

STATION G

1. State the domain and range and find an equation for the exponential equation.

2. Graph each of the following:

a)
$$f(x) = -2^{2x+6}$$

b)
$$f(x) = \left(\frac{1}{3}\right)^{2x}$$

c)
$$f(x) = -3(5)^{-x}$$