3.6 - Solving Exponential Equations

$$
\begin{array}{ll}
5^{x}=5^{4} & \text { If two powers } \\
\text { then } x=4 & \text { are equal and } \\
& \text { bases are same } \\
& \text { then exponents } \\
& \text { must be equal }
\end{array}
$$

Ex. 1 Solve.
a) $2^{x}=32$

$$
2^{x}=2^{5}
$$

then

$$
x=5
$$

b) $(-4)^{x}=-1024 \quad$ base is

$$
(-4)^{x}=(-4)^{5}
$$

then

$$
x=s
$$

d) $5^{4-3 x}=25^{x+1}$

$$
\begin{aligned}
& \int^{4-3 x}=\left(S^{2}\right)^{x+1} \begin{array}{l}
\text { power of } \\
\text { power } \\
\text { mut exp. }
\end{array} \\
& \text { then }
\end{aligned}
$$

$$
\begin{aligned}
4-3 x & =2(x+1) \\
4-3 x & =2 x+2 \\
2 & =5 x \\
\frac{2}{5} & =x
\end{aligned}
$$

For an equation to be true, both sides must be equal.
If $a^{x}=a^{y}$, then $x=y$ except when $a=-1,0$ or 1 .
\therefore Convert powers to a common base and solve by comparing exponents.

$$
\begin{aligned}
& K^{2} \text { no brackets } \\
& \text { c) }-3^{y}=-81 \\
& 3^{y}=81 \\
& \text { base is } 3 \\
& 3^{y}=3^{4}
\end{aligned}
$$

$$
\text { then } y=4
$$

e) $3^{x+1}=1$ \qquad * need like bases $3^{\circ}=1$

$$
3^{x+1}=3^{0}
$$

then

$$
\begin{array}{r}
x+1=0 \\
x=-1
\end{array}
$$

$$
\begin{aligned}
& \text { f) } \begin{array}{l}
x^{x+5}=8^{1-3 x} \\
\left(2^{1}\right)^{x+5}=\left(2^{3}\right)^{1-3 x} \\
\text { then } \\
2(x+5)=3(1-3 x) \\
2 x+10=3-9 x \\
11 x=-7 \\
x=-\frac{7}{11}
\end{array}{ }^{\text {g }}
\end{aligned}
$$

Practice:

$$
\begin{aligned}
& \text { i) } \frac{1}{256}=4^{5 x+1} \\
& 4^{-4}=4^{5 x+1} \\
& \text { then } \\
&-4=5 x+1 \\
&-5=5 x \\
&-1=x
\end{aligned}
$$

g) $7^{3-x}=\frac{1}{49}$
invert base
use neg

$$
\begin{array}{cc}
7^{3-x}=7^{-2} & 32\left(2^{x+5}\right)=2 \\
\text { then } & 2^{x+5}=x^{1} \\
3-x=-2 & 2^{x+5}=2^{-4} \\
5=x & \text { thin } \\
& x+5=-4 \\
x=-9
\end{array}
$$

$$
\begin{aligned}
& \text { j) } 9^{2 x+3}=27^{\frac{x}{4}} \\
& \left(3^{2}\right)^{2 x+3}=\left(3^{3}\right)^{x / 4}
\end{aligned}
$$

then

$$
4 \cdot 2(2 x+3)=3\left(\frac{x}{x}\right) \cdot y
$$

$$
8(2 x+3)=3 x
$$

$$
16 x+24=3 x
$$

$$
13 x=-24
$$

$$
x=\frac{-2 y}{13}
$$

h) $32\left(2^{\times+5}\right)-6=-4$ isolate pow n
k)

$$
\begin{aligned}
& 4\left(3^{5 x-1}\right)=36 \\
& 3^{5 x-1}=9
\end{aligned}
$$

$$
3^{5 x-1}=3^{2}
$$

then

$$
\begin{gathered}
5 x-1=2 \\
5 x=3 \\
x=\frac{3}{5}
\end{gathered}
$$

3.6 Solving Exponential Equations-FULL.notebook

Not a problem this year! Next year, you will learn logarithms.

$$
\begin{aligned}
& 4^{x+2}=14 \\
& \log 4^{x+2}=\log 14 \\
& (x+2) \log 4=\log 14 \\
& x+2=\frac{\log 14}{\log 4} \\
& x=\frac{\log 14}{\log 4}-2 \approx-0.96322
\end{aligned}
$$

Ex. 2 Solve.
a) $2^{x+4}+2^{x}=136$

$$
\begin{gathered}
2^{x}\left(2^{4}\right)+2^{x}=136 \\
2^{x}\left(2^{4}+1\right)=136 \\
2^{x}(16+1)=136 \\
2^{x}(17)=136 \\
2^{x}=8 \\
2^{x}=2^{3} \\
\text { thin } x=3
\end{gathered}
$$

b) $3^{x+1}-3^{x+4}=-702$

$$
\begin{gathered}
3^{x}\left(3-3^{4}\right)=-702 \\
3^{x}(-78)=-702 \\
3^{x}=9 \\
3^{x}=3^{2}
\end{gathered}
$$

The x-values must be 'brought together' in order to solve. This can be accomplished by dividing out a common factor. Work exp laws backward do

$$
\begin{cases}\left(2^{x}\right)\left(2^{4}\right) & \begin{array}{l}
\text { malt power } \\
\text { is same base }
\end{array} \\
2^{x+4} & \text { ado exp }\end{cases}
$$

Practice:
c) $7^{x+1}+7^{x+2}=392$

$$
\begin{gathered}
7^{x}\left(7+7^{2}\right)=392 \\
7^{x}(56)=392 \\
7^{x}=7
\end{gathered}
$$

then

$$
x=1
$$

then

$$
x=2
$$

method 2 GIF

$$
\begin{gathered}
3^{x+1}-3^{x+4}=-702 \\
3^{x+1}\left(1-3^{3}\right)=-702 \\
3^{x+1}(-26)=-702 \\
3^{x+1}=27 \\
3^{x+1}=3^{3} \\
\text { then } \\
x+1=3 \\
x=2
\end{gathered}
$$

Homework
 \$11-6 (Pick and choose)

$$
\begin{aligned}
\left(\frac{1}{8}\right)^{6 x+2} & =4^{6 x+12} \\
\left(2^{-3}\right)^{6 x+2} & =\left(2^{2}\right)^{6 x+12}
\end{aligned}
$$

