3.5 - Transformations for Exponential Functions

Today we will INVESTIGATE:

$$
y=a(b)^{k(x-d)+c}
$$

Base Functions vary for exponential. Ex. $y=2^{x}, y=3^{x}$ etc.

Ex. 1

a) Graph $y=2 \times$ (Base Function)

x	y
-1	$\frac{1}{2}$
0	1
1	2
2	4

b) On the same grid graph the following and indicate the transformations.
i) $y=2^{x}-6$
Down 6
ii) $y=\begin{array}{r}x+3 \\ \uparrow\end{array}$
Left 3

c)

	$y=2^{x}$ (Base)	$y=2^{x}-6$	$y=2^{x+3}$
Asymptote	$y=0$	$y=-6$	$y=0$
Domain	$\{x \in \mathbb{R}\}$	$\{x \in \mathbb{R}\}$	$\{7 \in \mathbb{R}\}$
Range	$\{y \in \mathbb{R} \mid y>0\}$	$\{y \in \mathbb{R} \mid y>-6\}$	$\{y \in \mathbb{R} \mid y>0\}$

Ex. $2 \quad y=-2 x-3$

a) List the transformations
(1) Reflection in x-axis (vertical)
(2) Right 3
$(x, y) \rightarrow(x+3,-y)$
b) Graph

Base $y=2^{-x}$
$\left(-1, \frac{1}{2}\right) \rightarrow\left(2,-\frac{1}{2}\right)$
$(0,1) \rightarrow(3,-1)$
$(1,2) \rightarrow(4,-2)$
$(2,4) \rightarrow(5,-4)$

Ex. 3

a) Graph $y=3^{x}$ (Base Function)

x	y
-1	$\frac{1}{3}$
0	1
1	3
2	9

b) On the same grid graph the following and indicate the transformations.
i) $y=3^{2 x}$
ii) $y=-2\left(3^{x}\right)$
(1) H.C. b.a.f.o. 2
(1) Refl, in 7 -axis (2) V.S. bafo 2
iii) $\mathrm{y}=\left(\frac{1}{3}\right)^{2 x} \longleftarrow$

Note: Can be rewritten

$$
y=\left(3^{-1}\right)^{2 x}
$$

$$
\begin{gathered}
\text { Base } \\
y=3^{x}
\end{gathered}
$$

(1) H.C. bafo 2
(2) Hor Refl. in y-axis

Ex. 4 Graph $y=2^{-3 x-6}+3$
Base
$y=2^{x}$

$$
y=2^{-3(x+2)}+3
$$

(1) Hor3 refl. in y-axis
(2) H.C. bafo 3
(3) UP 3
(4) LEFT 2

Ex. 5
a) Name another function that is equivalent to $f(x)=3^{2+x}$

$$
\begin{aligned}
& =3^{2} \cdot 3^{x} \\
& =9 \cdot 3^{x}
\end{aligned}
$$

b) What are the transformations that occur in each to give the same final function?

$$
\begin{aligned}
f(x) & =3^{2+x} \\
& =3^{x+2}
\end{aligned}
$$

$$
f(x)=9\left(3^{x}\right)
$$

(1) V.S. bart. 9
(1) Left 2

Ex. 6
a) Write several transformed equations with a base of 2 that passes through the point $(0,2)$.
(1) $y=2 \cdot 2^{x}$
(3) $y=2^{x+1}$
(5)

$$
y=2 \cdot 2^{-x}
$$

(2) $y=2^{x}+1$
(4) $y=2^{-x}+1$
b) Prove algebraically, if any of the above equations give the same graph.
(1)

$$
\begin{aligned}
y & =2 \cdot 2^{x} \\
& =2^{1+x} \pi \text { Same }
\end{aligned}
$$

(3) $y=2^{x+1}$

Homework: Pg 195 C1,C2,1,4,6-8,10,12, 13

