# <u>3.5 - Transformations for Exponential Functions</u> Today we will INVESTIGATE:



Base Functions vary for exponential. Ex.  $y= 2^x$ ,  $y= 3^x$  etc.

### **Ex.1**

a) Graph y=2<sup>x</sup> (Base Function)



|           | y= 2 <sup>×</sup> (Base) | y=2 <sup>×</sup> - 6 | y=2 <sup>x+3</sup> |
|-----------|--------------------------|----------------------|--------------------|
| Asymptote | y=0                      | y=-6                 | y=0                |
| Domain    | Exettes                  | Ereir3               | $\{z \in IR\}$     |
| Range     | {yer/y>03                | Eyer 4>-63           | 5yER y>03          |

c)

#### 3.5 Transformations of Exponential Functions.notebook





#### Ex.5

a) Name another function that is equivalent to  $f(x) = 3^{2+x}$ 

$$= 3^2 \cdot 3^2$$
$$= 9 \cdot 3^2$$

b) What are the transformations that occur in each to give the same final function?  $f(x) = 3^{2+x} \qquad f(x) = 9(3^{x})$   $= 3^{x+x} \qquad 0 \quad V.S. \quad borlo. \quad 9$   $O \quad Left = 2$ 

#### Ex. 6

a) Write several transformed equations with a base of 2 that passes through the point (0,2).

$$1 y = 2 \cdot 2$$

$$3 y = 2^{n}$$

$$3 y = 2 \cdot 2^{n}$$

$$3 y = 2^{n} + 1$$

$$4 y = 2^{n} + 1$$

b) Prove algebraically, if any of the above equations give the same graph.

(b) 
$$y = 2 \cdot 2^{\gamma}$$
  
=  $2^{\prime+\gamma}$  Same  
(3)  $y = 2^{\gamma+1}$ 

## Homework: Pg 195 C1,C2,1,4,6-8,10,12, 13

