3.3 - Rational Exponents

when the exponent is a rational number.

index: indicates what root you want

Note: when the index is 2 we don't write it... it is understood
(square root)

Ex 1. Evaluate.
a) $27^{\frac{1}{3}}$
b) $(-8)^{\frac{1}{3}}$
c) $(-16)^{\frac{1}{2}}$
$=\sqrt[3]{27}$
$=\sqrt[3]{-8}$
$=\sqrt[3]{-16}$
$=3$
$=-2$
\therefore No real roots!

$$
\text { d) } \begin{aligned}
& -16^{\frac{1}{2}} \\
= & -\sqrt{16} \\
= & -4
\end{aligned}
$$

e) $16^{\frac{-1}{4}}$
$=\frac{1}{16^{1 / 4}}$
$=\frac{1}{64^{\frac{1}{2}}}$
$=\frac{1}{\sqrt[4]{16}}$
$=\frac{1}{\sqrt{64}}$
$=\frac{1}{2}$
$=\frac{1}{8}$
$=1$
i) $81^{\frac{-1}{4}}$

$$
\sqrt[4]{81}
$$

$=\frac{1}{3}$

denominator is the index

Ex 2. Evaluate.
a) $27^{\frac{2}{3}}$
b) $81^{\frac{5}{4}}$
c) $16^{\frac{-3}{2}}$
d) $-8^{\frac{2}{3}}$
$=(\sqrt[3]{27})^{2}$
$=(\sqrt[4]{81})^{5}$
$=\frac{1}{16^{3 / 2}}$
$=-(\sqrt[3]{8})^{2}$
$=3^{2}$
$=3^{5}$
$=\frac{1}{(\sqrt{16})^{3}}$
$=-2^{2}$
$=9$
$=243$
$=-4$

$$
=\frac{1}{64}
$$

$$
\begin{array}{rll}
& { }^{\text {e) }(-27)^{\frac{-1}{3}}} & \text { f) }\left(\frac{4}{81}\right)^{\frac{-3}{2}} \\
=\frac{1}{\sqrt[3]{-27}} & =32^{0.4} \text { 业 } \begin{array}{l}
\text { Hint: } \\
\text { Change 0.4 into a } \\
\text { fraction in lowest } \\
\text { terms }
\end{array} \\
=\frac{1}{-3} & =\left(\frac{81}{4}\right)^{3 / 2} & =32^{\frac{2}{5}} \\
=-\frac{1}{3} & =\frac{(\sqrt{81})^{3}}{(\sqrt{4})^{3}} & =(\sqrt[5]{32})^{2} \\
& =\frac{729}{8} & =2^{2} \\
& & =4
\end{array}
$$

h) $25^{\frac{4}{9}} \cdot 5^{\frac{1}{9}}$
*
$=\left(5^{2}\right)^{\frac{4}{9}} \cdot 5^{\frac{1}{9}}$
$=5^{\frac{8}{9}} \cdot 5^{\frac{1}{9}}$
$=5$

Ex 3. Write the following radicals in exponent form.
ALWAYS REPLACE RADICAL WI BRACKETS

$$
\text { a) } \left.\begin{array}{rl}
& \sqrt[5]{7 x^{4}} \\
= & \left(7 x^{4^{5}}\right.
\end{array}\right)^{\frac{1}{5}}
$$

b) $\sqrt[3]{\sqrt[2]{x^{5}}}$
c) $\sqrt[3]{-5 x^{4}}$
d) $\begin{aligned} & \frac{1}{\sqrt[7]{x^{9}}} \\ = & \frac{1}{\left(x^{9}\right)^{\frac{1}{7}}}\end{aligned}$

$$
\begin{aligned}
& =\left(\left(x^{5}\right)^{\frac{1}{2}}\right)^{\frac{1}{3}}=\left(-5 x^{4}\right)^{\frac{1}{3}} \\
& =x^{\frac{5}{6}} \\
& =(-5)^{\frac{1}{3}} x^{\frac{4}{3}}
\end{aligned}
$$

$$
=\frac{1}{x^{9 / 7}}
$$

$$
\text { f) }\left(\sqrt[3]{x^{3} y^{2}}\right)\left(\sqrt[4]{x^{-2} y^{3}}\right)
$$

$$
\text { g) } \begin{aligned}
& \left(\sqrt[5]{2 a^{3} b^{4} c^{-2}}\right)^{4} \\
= & {\left[\left(2 a^{3} b^{4} c^{-2}\right)^{\frac{1}{5}}\right]^{4} }
\end{aligned}
$$

$$
=\left(2 a^{3} b^{4} c^{-2}\right)^{\frac{4}{5}}
$$

$$
=2^{\frac{4}{5}} a^{\frac{12}{5}} b^{\frac{16}{5}} c^{-\frac{8}{5}}
$$

$$
=\frac{2^{\frac{4}{5}} a^{\frac{12}{5}} b^{\frac{16}{5}}}{c^{\frac{8}{5}}}
$$

$$
\text { h) } \begin{aligned}
& \sqrt[5]{m^{3}} \cdot \sqrt[4]{m^{5}} \\
= & \left(m^{3}\right)^{\frac{1}{5}}\left(m^{5}\right)^{\frac{1}{4}} \\
= & m^{\frac{3}{5}} m^{\frac{5}{4}} \\
= & m^{\frac{3}{5}+\frac{5}{4}} \\
= & m^{\frac{37}{20}}
\end{aligned}
$$

i)

$$
\begin{aligned}
& \sqrt{\sqrt[3]{8 x^{5}}} \\
= & \left(\left(8 x^{5}\right)^{\frac{1}{3}}\right)^{\frac{1}{2}} \\
= & \left(8^{6} x^{5}\right)^{\frac{1}{6}} \\
= & 8^{\frac{1}{6}} x^{\frac{5}{6}}
\end{aligned}
$$

$$
\text { j) } \begin{aligned}
& \left(\sqrt[4]{4 m^{3} n^{5}}\right)^{2} \\
= & \left(4 m^{3} n^{5}\right)^{\frac{2}{4}} \\
= & \left(4 m^{3} n^{5}\right)^{\frac{1}{2}} \\
= & 4^{\frac{1}{2}} m^{\frac{3}{2}} n^{\frac{5}{2}} \\
= & 2 m^{\frac{3}{2}} n^{\frac{5}{2}}
\end{aligned}
$$

Off the mark. com by Mark Parisi
GRADING MY HOMEWORK WILL BRING YOU NOTHING BUT GREAT PAIN AND DESPAIR. FOR YOUR OWN SAKE, YOU SHOULD SIMPLY BURY IT SOMEWHERE AND WALK AWAY...

Homework

Handout -->Questions that have a square around them.

