Lesson 2.7: Inverse of a Function
The INVERSE of a relation is the reverse of the original relation.




If a function is called $f(x)$, then its inverse function is called $f^{-1}(x)$.

$$
\text { Note: } \quad f^{-1}(x) \quad \text { This is not an exponent! } \quad f^{-1}(x) \neq \frac{1}{f(x)}
$$

Ex. 1: Explore the inverse of the function $f(x)=x^{2}$ by:
a) interchanging the $x$ and $y$-coordinates and graphing both relations.

| Points on <br> Base Function | Points on <br> Inverse |
| :---: | :---: |
| $(-3,9)$ | $(9,-3)$ |
| $(-2,4)$ | $(4,-2)$ |
| $(-1,1)$ | $(1,-1)$ |
| $(0,0)$ | $(0,0)$ |
| $(1,1)$ | $(1,1)$ |
| $(2,4)$ | $(4,2)$ |
| $(3,9)$ | $(9,3)$ |


b) State the domain and range of $f(x)$ and $f^{-1}(x)$. What do you notice?

c) Is $f^{-1}(x)$ a function?

No! It fails the vertical
line test.
d) Add the line $y=x$ to your graph. What do you notice?

$$
\text { Reflection across } y=x
$$

e) Determine the equation of the inverse function by interchanging $x$ and $y$ and solving for $y$.

$$
\begin{gathered}
f(x)=x^{2} \\
y=x^{2} \\
\ln \text { terchange } x d y \\
x=y^{2} \\
\pm \sqrt{x}=y \\
\therefore f^{-1}(x)= \pm \sqrt{x}
\end{gathered}
$$

## The Big Ideas

There are three ways to find the inverse of a function:

1) Given the coordinates, interchange $x$ and $y$. $(a, b) \Rightarrow(b, a)$ or $f(a)=b \Rightarrow f^{1}(b)=f(a)$
2) Given the equation, interchange $x$ and $y$ and solve for $y$.
3) Given the graph, reflect in the line $y=x$.

NOTE: Not all inverse relations are functions.
The domain of a function is the range of its inverse.
The range of a function is the domain of its inverse.


Ex. 2: $\quad$ Given $f(x)$, graph $f^{1}(x)$.
a)


What is the mapping notation for the inverse of a function?

$$
(x, y) \rightarrow(y, x)
$$

Which points are invariant?
All points on $y=x$

What do you notice about the domain of $f(x)$ and the range of $\mathrm{f}^{-1}(\mathrm{x})$ ?

$$
D=\{x \in \mathbb{R} \mid x \geq 3\}
$$

$$
R=\{y \in \mathbb{R} \mid y \geq 3\}
$$

Ex. 3: Determine the equation of the inverse for each of the following.
a) $f(x)=5 x-2$
(1) $y=5 x-2$
(2) $x=5 y-2$
(3) $x+2=5 y$

$$
\frac{x+2}{5}=y
$$

(4) $f^{-1}(x)=\frac{x+2}{5}$

Sometimes it takes some extra work to go between $f(x)$ and $f^{-1}(x)$ !
b) $f(x)=\frac{1}{x+5}$

$$
\left.\begin{array}{l}
y=\frac{1}{x+5} \\
x+5 \\
x=\frac{1}{y+5} \\
x=1 \\
y+5=\frac{1}{x}
\end{array}\right\} \quad y=\frac{1}{x}-5
$$

$$
(y+5) x=1
$$

c) $f(x)=\sqrt{x+4}$
$y=\sqrt{x+4}$
$x=\sqrt{y+4}$
$x^{2}=y+4$
$x^{2}-4=y$
$f^{-1}(x)=x^{2}-4 \quad D=\{x \in \mathbb{R} \mid x \geq 0\}$


Notice that the domain of $f^{-1}(x)$ needs to be restricted so that it is equivalent to the range of $f(x)$.

Ex. 4: Given $f(x)=-3(x-4)^{2}+2$ :
a) Determine $f^{-1}(x)$.
$y=-3(x-4)^{2}+2$
$x=-3(y-4)^{2}+2$
$x-2=-3(y-4)^{2}$
$\frac{x-2}{-3}=(y-4)^{2}$
$\pm \sqrt{\frac{x-2}{-3}}=y-4$
$\pm \sqrt{-\frac{1}{3}(x-2)}$
$\pm \sqrt{\frac{x-2}{-3}}+4=y$
介
$\therefore f^{-1}(x)= \pm \sqrt{\frac{x-2}{-3}}+4$

b) Graph $f(x)$ and $f^{-1}(x)$.
c) Restrict the domain of $f(x)$ to one branch so that $f^{-1}(x)$ is also a function.
(.3) When restricting the domain identify the $x$-coord of the vertex.

For the right branch

$$
D=\{x \in \mathbb{R} \mid x \geq 4\}
$$

d) Graph $f(x)$ and $f^{-1}(x)$ with the restricted domains.


$D=\{x \in \mathbb{R} \mid x \geq 4\}$

# Homework <br> p. 137 肚C3, 1c, 2c, 3bc, 4d, 5d, 7c. (no technologs), 11, 15bc, 18, 20, 21 




