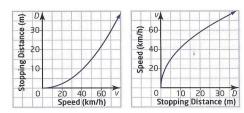
Lesson 2.7: Inverse of a Function

The INVERSE of a relation is the <u>reverse</u> of the original relation.



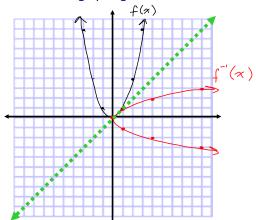
If a function is called f(x), then its inverse function is called $f^{-1}(x)$.

Note:
$$f^{-1}(x)$$
 Pronounced "the inverse of f at x " $f^{-1}(x) \neq \frac{1}{f(x)}$

Ex. 1: Explore the inverse of the function $f(x) = x^2$ by:

a) interchanging the x and y-coordinates and graphing both relations.

Points on	Points on
Base Function	Inverse
(-3, 9)	(9,-3)
(-2,4)	(4,-2)
(-1,1)	(1,-1)
(0,0)	10,0)
(1,1)	(1,1)
(2,4)	(4,2)
(3,9)	(9,3)



b) State the domain and range of f(x) and $f^{-1}(x)$. What do you notice?

b) State the domain and range of
$$f(x)$$
 and $f^{-1}(x)$. What do you notice $f(x) = \{x \in \mathbb{R}\}$ $f^{-1}(x) = \{x \in \mathbb{R} \mid x \ge 0\}$ f

e) Determine the equation of the inverse function by interchanging x and y and solving for y.

$$f(x) = \chi^{2}$$

$$y = \chi^{2}$$
Interchange χdy

$$\chi = y^{2}$$

$$\pm \sqrt{\chi} = y$$

$$f^{-1}(\chi) = \pm \sqrt{\chi}$$

The Big Ideas

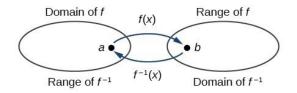
There are three ways to find the inverse of a function:

- 1) Given the coordinates, interchange x and y. $(a,b) \Rightarrow (b,a)$ or $f(a) = b \Rightarrow f^1(b) = f(a)$
- 2) Given the equation, interchange x and y and solve for y.
- 3) Given the graph, reflect in the line y = x.

NOTE: Not all inverse relations are <u>functions</u>.

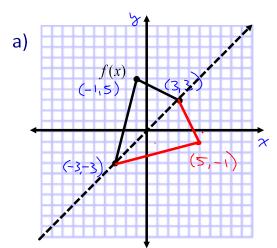
The <u>domain</u> of a function is the <u>range</u> of its inverse.

The range of a function is the domain of its inverse.



f-1(x)

Ex. 2: Given f(x), graph $f^{-1}(x)$.



b) $f(x) = \sqrt{x-3}$

What for the

What is the mapping notation for the inverse of a function?

$$(x,y) \rightarrow (y,x)$$

What do you notice about the domain of f(x) and the range of $f^{-1}(x)$?

$$D = \{x \in \mathbb{R} \mid x \ge 3\}$$

$$R = \{y \in \mathbb{R} \mid y \ge 3\}$$

Which points are invariant?

Determine the equation of the inverse for each of the following. Ex. 3:

a)
$$f(x) = 5x - 2$$

$$D = 5x - 2$$

$$D \quad y = 5x - 2$$

$$Q \quad \chi = 5y - 2$$

$$3 \quad x+2 = 5y$$

$$\frac{x+2}{5} = y$$

- 1. Write f(x) as y.
- 2. Interchange x and y.
- 3. Solve for y.
- 4. Rewrite as $f^{-1}(x)$.

$$f'(x) = \frac{x+2}{5}$$

Sometimes it takes some extra work to go between f(x) and $f^{-1}(x)$!

b)
$$f(x) = \frac{1}{x+5}$$

$$\chi = \frac{1}{y+5}$$

$$\lambda + 2 = \frac{x}{1}$$

$$(\lambda + 2) x = 1$$

$$y = \frac{1}{x} - 5$$

b)
$$f(x) = \frac{1}{x+5}$$

$$y = \frac{1}{x+5}$$

$$x = \frac{1}{y+5}$$

$$y = \frac{1}{x} - 5$$

c)
$$f(x) = \sqrt{x+4}$$

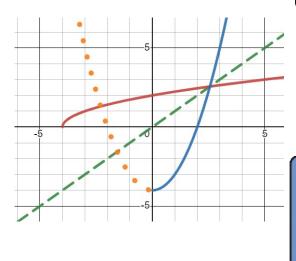
 $y = \sqrt{x+4}$
 $x = \sqrt{y+4}$

$$\chi^2 = y + 4$$

$$\chi^2 - 4 = y$$

$$f'(x) = \chi^2 - 4$$

$$f'(x) = \chi^2 - 4 \quad D = \{x \in \mathbb{R} \mid \chi \ge 0\}$$



Notice that the domain of $f^{-1}(x)$ needs to be restricted so that it is equivalent to the range of f(x).

Pull

2.7 Inverse of a Function.notebook

Ex. 4: Given $f(x) = -3(x-4)^2 + 2$:

a) Determine $f^{-1}(x)$.

$$y = -3(x-4)^{2} + 2$$

$$x = -3(y-4)^{2} + 2$$

$$x-2 = -3(y-4)^{2}$$

$$\frac{\chi-2}{-3}=(y-4)^2$$

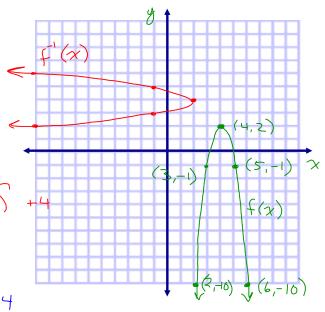
$$\frac{\pm\sqrt{x-2}}{-3} = y-4$$

$$\pm\sqrt{-\frac{1}{3}(x-2)} +4$$

$$\pm\sqrt{-\frac{1}{3}(x-z)}$$

$$\frac{1}{2} \sqrt{\frac{x-2}{-3}} + 4 = y$$

$$\therefore \int_{-1}^{-1} (\chi) = +\sqrt{\frac{x-2}{-3}} + 4$$



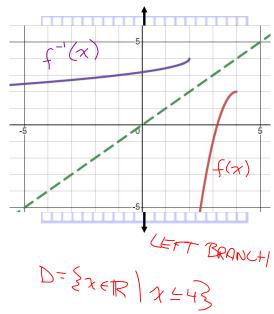
- b) Graph f(x) and $f^{-1}(x)$.
- c) Restrict the domain of f(x) to one branch so that $f^{-1}(x)$ is also a function.

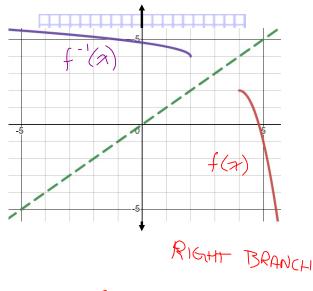
When restricting the domain identify the x-coord of the vertex.

For the right branch

$$D = \left\{ x \in \mathbb{R} \mid x \ge 4 \right\}$$

d) Graph f(x) and $f^{-1}(x)$ with the restricted domains.





D= \{ x \in \R | x \ge 4 \}

Homework
p. 137 #C3, 1a, 2a, 3bc, 4d, 5d,
7c (no technology), 11, 15bc, 18, 20, 21

