Lesson 2.5: Stretches/Compressions of Functions
Part A: Vertical Stretches \& Compressions $\quad g(x)=a f(x)$
$g(x)=a f(x)$ is the graph of $f(x)$ that has been vertically stretched by a factor of "a".

If $a>1$, then the graph is vertically $\qquad$ .
If $0<a<1$, then the graph is vertically $\qquad$ .

Ex. 1: Given $f(x)$ as shown, graph:
a) $g(x)=3 f(x)$ Vertical stretch
by 3 $(x, y) \rightarrow(x, 3 y)$
$(-3,0) \rightarrow(-3,0)$
$(-2,1) \rightarrow(-2,3)$
$(0,-1) \rightarrow(0,-3)$
$(3,2) \rightarrow(3,6)$
$\begin{aligned} &(4,0) \rightarrow(4,0) \\ & 1\end{aligned}$
b) $h(x)=\frac{1}{2} f(x)$


$$
(x, y)->\left(x \frac{1}{R} y\right)
$$

Which points are invariant? $\Rightarrow$ Points lying on the $x$-axis ( $y$-coord $=0$ )

Ex. 2: Given $f(x)=x^{2}$ write equations to represent $\mathrm{g}(\mathrm{x})$ and $\mathrm{h}(\mathrm{x})$ and graph :
a) $g(x)=2 f(x)$ Vert. stretch $(x, y) \rightarrow(x, 2 y)$
$(1,1) \rightarrow(1,2)$
$(2,4) \rightarrow(2,8)$
; $(3,9) \rightarrow(3,18)$
b) $g(x)=\frac{1}{3} f(x)$
 $(x, y) \rightarrow\left(x, \frac{y}{3}\right)$
$(2,4) \rightarrow\left(2, \frac{4}{3}\right)$
$(3,9) \rightarrow(3,3)$
$(4,16) \rightarrow\left(4, \frac{16}{3}\right)$

What do you notice about the domain and range?


The domain is not affected by a vertical transformation. The range is affected.

## Part B: Horizontal Stretches \& Compressions $\quad g(x)=f(k x)$

$g(x)=f(k x)$ is the graph of $f(x)$ that has been horizontally stretched by a factor of $" \frac{1}{k}$ ".
If $k>1$, then the graph is horizontally $\qquad$ .

If $0<k<1$, then the graph is horizontally $\qquad$ _.

Note: k does the opposite of what you naturally think since it is inside the function. Note: Textbook uses incorrect terminology for both vertical and horizontal compressions!

Ex. 3: Given $f(x)$, graph:
a) $g(x)=f(2 x) \quad$ Horz. compression
$(x, y) \rightarrow\left(\frac{x}{2}, y\right)$ by 2
$(-3,0) \rightarrow\left(-\frac{3}{2}, 0\right)$
b) $h(x)=f\left(\frac{1}{3} x\right) \begin{gathered}\text { Horz. stretch } \\ \text { by } 3\end{gathered}$ $(x, y)->(B x, y)$


Which points are invariant? $\Rightarrow$ Points lying on the $y$-axis ( $x$-coord $=0$ )

Ex. 4: Given $f(x)=\sqrt{x}$ write equations to represent $\mathrm{g}(\mathrm{x})$ and $\mathrm{h}(\mathrm{x})$ and graph :
a) $g(x)=f(4 x)$ $(x, y)->\left(\frac{x}{4}, y\right)$
$(1,1) \rightarrow\left(\frac{1}{4}, 1\right)$
$(4,2) \rightarrow(1,2)$
$(9,3) \rightarrow\left(\frac{9}{4}, 3\right)$
b) $h(x)=f\left(\frac{1}{2} x\right) \begin{gathered}\text { Hor } 3 \text { streteh } \\ \text { by } 2\end{gathered}$ $(x, y) \rightarrow(2 x, y)$


What do you notice about the domain and range?

The range is not affected by a horizontal transformation. The domain is affected.

## Part C: Combining Horizontal \& Vertical Stretches \& Compressions

Ex. 5: Given $f(x)=|x|$ :
a) Write an equation to represent $g(x)=2 f(2 x)$.
(1) (2)
b) Describe the transformations. (1) Vertical stretch by?
(2) Horizontal compression by 2
c) Graph $g(x)=2 f(2 x)$.

$$
(x, y) \rightarrow\left(\frac{x}{2}, 2 y\right)
$$

d) State the domain and range.

$D:\{x \in \mathbb{R}\}$

$$
R:\{y \in \mathbb{R} \mid y \geq 0\}
$$

Ex. 6: Given that $f(x)=(2 x)^{2}$ is a parabola that has been horizontally compressed by a factor of 2 , can you describe a different transformation that would give the SAME graph?


Equivalent functions
have the same graph

# Homework p. 119 HC1, C3, 2bcd/i/iiii/iv, 3, 4, 6, Tabcde, 13 ( use desmos) <br> <br> Extra Practice 2.5 

 <br> <br> Extra Practice 2.5}


