Lesson 2.5: Stretches/Compressions of Functions Gizmo

g(x) = af(x)Part A: Vertical Stretches & Compressions

g(x) = af(x) is the graph of f(x) that has been vertically stretched by a factor of "a".

If a > 1, then the graph is vertically _____ Stretch____ If 0 < a < 1, then the graph is vertically (concession)

Ex. 1: Given f(x) as shown, graph:

a)
$$g(x) = 3f(x)$$
 Vertical Stretch by 3

$$(x,y) \to (x,3y)$$

 $(-3,0) \to (-3,0)$

$$(3,2) \rightarrow (3,6)$$

$$(x,y) \rightarrow (x,3y)$$
 $(-3,0) \rightarrow (-3,0)$
 $(-2,1) \rightarrow (-2,3)$
 $(0,-1) \rightarrow (0,-3)$
 $(3,2) \rightarrow (3,6)$
 $(4,0) \rightarrow (4,0)$
b) $h(x) = \frac{1}{2}f(x)$
 $(x,y) \rightarrow (x,y)$

Which points are invariant? \Rightarrow Points lying on the x-axis (y-coord = 0)

Ex. 2: Given $f(x) = x^2$ write equations to represent g(x) and h(x) and graph:

a)
$$g(x) = 2f(x)$$

$$(x,y) \rightarrow (x, 2y)$$

$$(x,y) \rightarrow (x, 2y)$$

 $(1,1) \rightarrow (1, 2)$
 $(2,4) \rightarrow (2,8)$
 $(3,9) \rightarrow (3,18)$

$$(2,4) \rightarrow (2,8)$$

What do you notice about the domain and range?

The domain is not affected by a vertical transformation. The range is affected.

Part B: Horizontal Stretches & Compressions g(x) = f(kx)

g(x) = f(kx) is the graph of f(x) that has been horizontally stretched by a factor of " $\frac{1}{k}$ ".

If k > 1, then the graph is horizontally <u>compression</u>

If 0 < k < 1, then the graph is horizontally ______ Stretch

Note: k does the opposite of what you naturally think since it is inside the function. Note: Textbook uses incorrect terminology for both vertical and horizontal compressions!

Ex. 3: Given f(x), graph:

a)
$$g(x) = f(2x)$$

a) g(x) = f(2x) Horz. compression

$$(x,y) \rightarrow (\frac{x}{2},y)$$

$$(x,y) \rightarrow (\frac{x}{2},y)$$
 by 2
 $(-3,0) \rightarrow (-\frac{3}{2},0)$

Which points are invariant? \Rightarrow Points lying on the y-axis (x-coord = 0)

Ex. 4: Given $f(x) = \sqrt{x}$ write equations to represent g(x) and h(x) and graph :

- a) g(x) = f(4x) Horz compression $(x,y) \rightarrow (\frac{x}{4}, y)$

- b) $h(x) = f\left(\frac{1}{2}x\right)$ to 3. Sheete $\int_{y}^{y} dx$
- $(x,y) \rightarrow (2x,y)$
- The range is not affected by a horizontal What do you notice about 9 transformation. The domain is affected. the domain and range?

Part C: Combining Horizontal & Vertical Stretches & Compressions

Ex. 5: Given f(x) = |x|:

- a) Write an equation to represent g(x) = 2f(2x).0 0
- b) Describe the transformations.

1 Vertical stretch by ?

3 Horizontal compression by 2

c) Graph g(x) = 2f(2x).

$$(x,y) \rightarrow (\frac{x}{2}, 2y)$$

d) State the domain and range.

D: Exem}

R: {y < R | y > 0 }

Ex. 6: Given that $f(x) = (2x)^2$ is a parabola that has been horizontally compressed by a factor of 2, can you describe a different transformation that would give the SAME graph?

 $f(x) = (2x)^2$

=4x2 Vertical stretch

Equivalent functions have the <u>same</u> graph

Homework p.119 #C1, C3, 2bcd/i/iii/iv, 3, 4, 6, 7abcde, 13 (use desmos)

Extra Practice 2.5

