Lesson 2.4: Reflections A reflection creates a mirror image.
A. Reflection in the x-axis (vertical reflection).
 Flip sign
What do you notice about the x-values?
Do not change

Invariant points are on the x-axis.

Ex. 1:
a) Graph $f(x)=(x-3)^{2}+5$ Pattern $\begin{array}{ll}\operatorname{Vertex}(3,5) & \rightarrow 2 \uparrow 4 \\ a=1 & \rightarrow 3\end{array}$
b) Find the equation of $g(x)=-f(x)$.

$$
\begin{aligned}
g(x) & =-\left[(x-3)^{2}+5\right] \\
& =-(x-3)^{2}-5
\end{aligned}
$$

c) Graph $\mathrm{g}(\mathrm{x})$.
$V(3,-5) \quad a=-1 \quad \curvearrowleft$
d) List any invariant points.
None

e) State the domain and range of $f(x)$ and $g(x)$.

$$
\begin{aligned}
f(x): & D=\{x \in \mathbb{R}\} \\
R & =\{y \in \mathbb{R} \mid y \geq 5\}
\end{aligned}
$$

$$
\begin{aligned}
g(x): & D \\
R & =\{x \in \mathbb{R}\} \\
& =\{y \in \mathbb{R} \mid y \leqslant-5\}
\end{aligned}
$$

Ex. 2:
a) $\quad \operatorname{Graph} \mathrm{f}(\mathrm{x})=\sqrt{x+2}+3$

Parent LEFT 2 Ur 3
b) Find the equation of $g(x)=-f(x)$.

$$
\begin{aligned}
g(x) & =-[\sqrt{x+2}+3] \\
& =-\sqrt{x+2}-3
\end{aligned}
$$

c) Graph $\mathrm{g}(\mathrm{x})$.

$$
\text { Reflection in } x \text {-axis }
$$

d) List any invariant points.
wore

e) State the domain and range of $f(x)$ and $g(x)$.

$$
\begin{array}{rlr}
f(x): & D=\{x \in \mathbb{R} \mid x \geq-2\}^{\text {sang }} g(x): D=\{x \in \mathbb{R} \mid x \geq-2\} \\
& R=\{y \in \mathbb{R} \mid y \geq 3\} & R=\{y \in \mathbb{R} \mid y \leq-3\}
\end{array}
$$

B. Reflection in the y-axis (horizontal reflection).

$$
y=f(x)
$$

What do you notice about the x-values? Change (flipped)
What do you notice about the y-values? Do not change

Ex. 3:
a) $\quad \operatorname{Graph} f(x)=(x+4)^{2}$ Vertex $(-4,0)$

b) Find the equation of $g(x)=f(-x)$.

$$
\begin{aligned}
g(x) & =(-x+4)^{2} \\
& =[-(x-4)]^{2} \\
& =(-1)^{2}(x-4)^{2} \\
& =1(x-4)^{2}
\end{aligned}
$$

c) $\quad \begin{aligned} & \text { Graph } g(x) . \\ & V \operatorname{ertex}(4,0)\end{aligned}, ~$

d) List any invariant points.

Set $x=0$ All invariant points for hurz. reflection are y-ints $f(0)=(0+4)^{2}$ $\therefore(0,16)$ is invariant
e) State the domain and range of $f(x)$ and $g(x)$.

$$
\begin{aligned}
f(x): & D=\{x \in \mathbb{R}\} \\
& R=\{y \in \mathbb{R} \mid y \geq 0\}
\end{aligned}
$$

$$
\begin{aligned}
g(x): & D=\{x \in \mathbb{R}\} \\
& R=\{y \in \mathbb{R} \mid y \geq 0\}
\end{aligned}
$$

Ex. 4

b) Find the equation of $g(x)=f(-x)$.

$$
g(x)=\frac{1}{-x-2}
$$

$$
=\frac{1}{-(x+2)}
$$

$\begin{aligned} & \text { Vertion } \\ & \text { Reflection }\end{aligned}=-\frac{1}{x+2}$
c) Graph $g(x)$.

d) List any invariant points.
y-ints!

$$
f(0)=\frac{1}{0-2} \quad\left(0,-\frac{1}{2}\right)
$$

$$
=-\frac{1}{2}
$$

e) State the domain and range of $f(x)$ and $g(x)$.
$f(x): D=\{x \in \mathbb{R} \mid x \neq 2\}$
$g(x): D=\{x \in \mathbb{R} \mid x \neq-2\}$ $R=\{y \in \mathbb{R} \mid y \neq 0\}$
$R=\{y \in \mathbb{R} \mid y \neq 0\}$
Summary

If $y=f(x)$, then:
$y=-f(x)$ represents a reflection in \qquad
Under a reflection in the \underline{x}-axis, the point $(x, y) \Rightarrow(\underline{x},-y)$.
Invariant points are located x-ints .
$y=f(-x)$ represents a reflection in $y-a \times 13$ \qquad .
Under a reflection in the y-axis, the point $(x, y) \Rightarrow(\underline{-x}, y)$. Invariant points are located \qquad .
$y=-f(-x)$ represents a reflection in x-axis and
\qquad . The order of these reflections does not matter. Under these reflections, the point $(x, y) \Rightarrow(\underline{-x},-y)$.

Ex. 5:
Given $f(x)=|x-3|$
a) Graph $f(x)$.
b) Find the equation of $g(x)=-f(-x)$. Graph $g(x)$.

$$
\begin{aligned}
g(x) & =-|-x-3| \\
& =-|x(x+3)|_{\text {ABS value mears }} \\
& =-|x+3| \quad \text { positive }
\end{aligned}
$$

Homework p. 110 HC1, 1ef, 2cef, Bef,
 \&acdf (textbook does not fully simplify equations - you are expected to) 5. 30 (do not use tech - solve algebraically) ID dbce (omit-f(-x))

Extra Practice 2.4

