2.2A Operations with Rational Expressions (Multiplying and Dividing)

A concrete example:

$$
\begin{aligned}
& \frac{12}{9} \times \frac{6}{14} \\
= & \frac{2}{3} \\
= & \frac{2}{21}
\end{aligned}
$$

Simplify before multiplying.

A concrete example:

$$
\begin{aligned}
& \frac{5}{6} \div \frac{10}{9} \\
= & \frac{8}{6} \times \frac{93}{10} \\
= & 3_{2}^{2}
\end{aligned}
$$

Multiply by the reciprocal of the divisor, then simplify.

Ex. 1 Simplify the rational expression. State the restrictions.

$$
\begin{aligned}
& \frac{15 a b^{3}}{4 a} \div \frac{25 a^{4} b}{12 a b^{4}} \\
= & \frac{15 a b^{3}}{14 a} \times \frac{{ }^{3} 12 a b^{4}}{25 a^{4} b} \\
= & \frac{9 b^{6}}{5 a^{3}}, a \neq 0, b \neq 0
\end{aligned} \begin{cases}\frac{\alpha \cdot a \cdot b \cdot b \cdot b \cdot b \cdot b \cdot b \cdot b}{} \quad \begin{array}{l}
\text { This is an easier } \\
\text { example because the } \\
\text { expressions are } \\
\text { monomials. }
\end{array} \\
& \end{cases}
$$

Ex. 2 Simplify the rational expression. State the restrictions.

$$
\begin{aligned}
& \frac{(x+1)}{(x-1)} \cdot \frac{(x-2)}{(x+1)} \\
= & \frac{x-2}{x-1}, x \neq \pm 1
\end{aligned}
$$

This is an easier example because the expressions are factored.

Divide out factors... not termsII

Ex. 3 Simplify the rational expressions. State restrictions.

$$
\begin{aligned}
& \begin{array}{ll}
\mu & 4 \\
A & 4 \\
4
\end{array} \\
& \sim 2,2 \\
& \text { b) } \frac{x^{2}+4 x+4}{x-2} \div \frac{3 x+6}{x^{2}-5 x+6} \\
& \text { in the denominator. } \\
& \begin{array}{ll}
M & 6 \\
A & -5
\end{array} \\
& \sim-2,-3 \\
& =\frac{(x+2)(x+2)}{x-2} \div \frac{3(x+2)}{(x-2)(x-3)} \\
& =\frac{(x+2)(x+2)}{x-2} \times \frac{(x-2)(x-3)}{3(x+2)} \\
& =\frac{(x+2)(x-3)}{3}, x \neq 2,3,-2
\end{aligned}
$$

Ex. 4 Simplify and state restrictions. M - 6 A -5
$N_{-} \frac{2}{6} \frac{2}{1} J$
$\frac{1}{-3} \frac{2 x^{2}-5 x-3}{2 x^{2}-11 x+15} \times \frac{4 x^{2}-8 x-5}{4 x^{2}+4 x+1}$

M-20
A - 8
$N=\frac{4}{-10} \quad \frac{4}{2}$
$\frac{2}{-5} \quad \frac{2}{1}$

$$
\begin{aligned}
& M 30 \longleftarrow \longrightarrow \\
& \begin{array}{ll}
M & 4 \\
A & 4
\end{array} \\
& N \frac{2}{-6} \frac{2}{-5} \\
& \sim \frac{4}{2} \quad \frac{4}{2} \\
& \frac{1}{-3} \\
& =\frac{(x-3)(2 x+1)}{(x-3)(2 x-5)} \times \frac{(2 x-5)(2 x+1)}{(2 x+1)(2 x+1)} \\
& =1, x \neq 3, \frac{5}{2},-\frac{1}{2}
\end{aligned}
$$

Ex. 5 a) Write and simplify an expression that represents the ratio of the large rectangular area to the shaded rectangular area.
b) What are the restrictions on x ? What are the restrictions in the context of the problem?

$$
\underset{\text { Rectangle }}{\text { Large }}=\frac{x+1}{2} \cdot \frac{x-3}{2}
$$

$$
=\frac{(x+1)(x-3)}{4}
$$

$$
\begin{aligned}
& \text { Shaded } \\
& \text { Rectangb }
\end{aligned}=\frac{x-2}{3} \cdot \frac{x+1}{4}
$$

$$
=\frac{(x-2)(x+1)}{12}
$$

Ratio of large: small
large \div small

$$
\begin{aligned}
\text { Ratio: } & \frac{(x+1)(x-3)}{4} \div \frac{(x-2)(x+1)}{12} \\
= & \frac{(x+1)(x-3)}{4} \times \frac{12^{3}}{(x-2)(x+1)} \\
= & \frac{3(x-3)}{(x-2)}, x \neq 2,-1
\end{aligned}
$$

2.2A Operations with Rational Expressions Mulitplying and Dividing.notebook March 02, 2023

HOMEWORK Page 93 HC1, C2, 1d, 2c, 3c, 4ac, 5c, 6ac, 12
 + Additional HW Handoot Lesson 2.2A

2.2A Operations with Rational Expressions Mulitplying and Dividing.notebook March 02, 2023

