2.6 B Homework Handout

- 1. Explain what transformations you would need to apply to the graph of y = f(x) to graph each function.
 - a. y = 3f(x) 1b. y = f(x - 2) + 3c. y = f(2x) - 5d. $y = -f(\frac{1}{2}x) - 2$ e. $y = \frac{2}{3}f(x + 3) + 1$ f. y = 4f(-x) - 4
- 2. Sketch each set of functions on the same set of axes.

a.
$$y = x^2, y = 3x^2, y = 3(x-2)^2$$

b. $y = \sqrt{x}, y = \sqrt{3x}, y = \sqrt{-3x}, y = \sqrt{-3(x+1)} - 4$
c. $y = \frac{1}{x}, y = \frac{2}{x}, y = -\frac{2}{x}, y = -\frac{2}{x-1} + 3$
d. $y = |x|, y = \left|\frac{1}{2}x\right|, y = -\left|\frac{1}{2}x\right|, y = -\left|\frac{1$

- 3. Explain what transformations you would need to apply to the graph of y = f(x) to graph each function.
 - a. $y = f\left(\frac{1}{3}(x+4)\right)$ b. y = 2f(-(x-3))c. y = -3f(2(x-1)) - 3
- 4. If $f(x) = x^2$, sketch the graph of each function and state the domain and range. a. y = f(x-2) + 3b. $y = -f\left(\frac{1}{4}(x+1)\right) + 2$
- 5. If $f(x) = \sqrt{x}$, sketch the graph of each function and state the domain and range. a. y = f(x - 1) + 4 c. y = -2f(-(x - 2)) + 1b. $y = f(-\frac{1}{2}(x + 4)) - 3$

6. If f(x) = |x|, sketch the graph of each function and state the domain and range. a. y = f(2(x-3))b. y = 4f(2(x-1)) - 2c. $y = -\frac{1}{2}f(3(x+2)) + 4$

7. Describe the transformations that you would apply to the graph of $f(x) = \frac{1}{x}$ to transform it into each of these graphs. Is there more than one possible answers for some of these?

a.
$$y = \frac{1}{x - 2}$$

b. $y = \frac{1}{x} + 2$
c. $y = 0.5\left(\frac{1}{x}\right)$
d. $y = \frac{2}{x}$
e. $y = \frac{1}{2x}$
f. $y = -\frac{1}{x}$

- 8. For $f(x) = x^2$, sketch the graph of g(x) = f(2x + 6).
- 9. For $f(x) = \sqrt{x}$, sketch the graph of g(x) = f(-3x 12).
- 10. For f(x) = |x|, sketch the graph of g(x) = f(4x + 8).
- 11. The graph of $g(x) = \sqrt{x}$ is reflected across the y-axis, stretched vertically by the factor of 3, and then translated 5 units right and 2 units down. Draw the graph of the new function and writes its equation.

MCR3U

- 13. The function y = f(x) has been transformed to y = af[k(x d)] + c. Determine a, k, c and d; sketch the graph; and state the domain and range for each.
 - a. A vertical stretch by a factor of 2, a reflection in the x-axis, and a translation 4 units right are applied to $y = \sqrt{x}$
 - b. A vertical compression by the factor $\frac{1}{2}$, a reflection in the y-axis, a translation 3 units left, and a translation 6 units down are applied to $f(x) = \frac{1}{x}$.
 - c. A horizontal compression by a factor of 3, a vertical stretch by the factor 3, a translation 1 unit right, and a translation 6 units down are applied to y = |x|.
- 14. If f(x) = (x 2)(x + 5), determine the x-intercepts for each function **without** graphing. Explain your thinking.

a.
$$y = f(x)$$

b. $y = -4f(x)$
c. $y = f\left(-\frac{1}{3}x\right)$
d. $y = f(-(x+2))$

- 15. List the steps you would take to sketch the graph of a function of the form y = af(k(x d)) + cwhen f(x) is one of the parent functions you have studied in this chapter. Discuss the roles of a, k, c, and d and the order in which they are applied.
- 16. The graphs of $f(x) = x^2$ and another parabola, g(x), are shown.
 - a. Determine a combination of transformations that would produce the second parabola from the first.
 - b. Determine the equation of the second parabola.

MCR3U

MCR3U

Answers:

Note: let **ref x**= reflection over the x-axis, **ref y**= reflections over the y-axis, **vs** = vertical stretch by a factor of, **vc**=vertical compression by a factor of, **hs**=horizontal stretch by a factor of, **hc**=horizontal compression by a factor of, **vt**= vertical translation, and **ht**= horizontal translation

1.	a.	vs 3, vt down 1	с.	hc 2, vt down 5	e.	vc 3/2, ht left 3, vt up 1
	b.	ht right 2, vt up 3	d.	ref x, hs 2, vt down 2	f.	ref y, vs 4, vt down 4

2. 4, 5, 6, 8, 9, 10, 11, 13 Check your solutions on Desmos

3.	a.	hc 3, ht left 4	b.	ref y, vs 2, ht right 3	с.	ref x, vs 3, hc 2, ht right 1, vt down 3

4. Check your graphs on Desmos

-						
	a.	$D: \{x \in R\}$	b.	$D: \{x \in R\}$	с.	$D: \{x \in R\}$
		$R: \{ y \ge 3, y \in R \}$		$R: \{ y \le 2, y \in R \}$		$R: \{ y \ge -1, y \in R \}$

5. Check your graphs on Desmos

a.	$D: \{x \ge 1, x \in R\}$	b.	D: $\{x \le -4, x \in R\}$	с.	$D: \{x \le 2, x \in R\}$
	$R: \{ y \ge 4, y \in R \}$		$R: \{ y \ge -3, y \in R \}$		$R: \{ y \le 1, y \in R \}$

6. Check your graphs on Desmos

a.	$D: \{x \ge 1, x \in R\}$	b.	D: $\{x \le -4, x \in R\}$	с.	D: $\{x \le 2, x \in R\}$
	$R: \{ y \ge 4, y \in R \}$		$R: \{ y \ge -3, y \in R \}$		$R: \{ y \le 1, y \in R \}$

7.

a.	ht right 2, no other possible option	с.	vc 2 or hc 2	e.	hc 2or vc 2
b.	Vt up 2, no other possible option	d.	vs 2or hs 2	f.	ref xorref y

11. $y = 3\sqrt{-(x-5)} - 2$ or it can be written in function notation as: g(x) = 3f(-(x-5)) - 2. 12.

a.	С	с.	А	e.	F	g.	Н
b.	E	d.	G	f.	D	h.	В

13.

D: $\{x \ge 4, x \in R\}$ D: $\{x \ne -3, x \in R\}$ D: $\{x \in R\}$ B: $\{y \le 0, y \in R\}$ B: $\{y \ne -6, y \in R\}$ B: $\{y \ge -6, y \in R\}$	a.	a: -2 k: NA c: NA d: 4	b.	a: 0.5 k: -1 c: -6 d: -3	с.	a: 3 k: 3 c: -6 d: 1
R : { $y ≤ 0, y ∈ R$ } R : { $y ≠ -6, y ∈ R$ } R : { $y ≥ -6, y ∈ R$ }		D: $\{x \ge 4, x \in R\}$		$D: \{x \neq -3, x \in R\}$		$D: \{x \in R\}$
		R: $\{y \le 0, y \in R\}$		$R: \{y \neq -6, y \in R\}$		$R: \{ y \ge -6, y \in R \}$

14.

	a.	-5, 2	b.	-5, 2	c.	-6, 15	d.	-4, 3
--	----	-------	----	-------	----	--------	----	-------

15. See your notes :)

16. a) ref x, vc 2, ht left 6, vt up 2

b) $g(x) = -\frac{1}{2}f(x+6) + 2$) or $g(x) = -\frac{1}{2}(x+6)^2 + 2$