1.8 Solving Linear and Quadratic Systems

A system of equations consists of two or more equations. If the graphs in the system are linear (degree 1) and quadratic (degree 2), the system could have no solution, one solution, or two solutions.

Tangent - A line that intersects a curve at one point and has the same slope as the curve at that point.

Secant - A line that intersects a curve at two distinct points.

Process for solving a linear-quadratic system algebraically:

1. Isolate one variable from the linear equation.
2. Sub into the quadratic.
3. Solve for the remaining variable.
4. Sub answer(s) back into the linear equation to find the coordinate(s) of intersection, if they exist.

Ex. 1 Solve the system.
(1) $y=x^{2}-3$
(2) $2 x+y=-3$

From (2)

Sub each x back into (2)

Process for solving algebraically:

1. Isolate one variable from the linear equation.
2. Sub into the quadratic.
3. Solve for the remaining variable.
4. Sub answers) back into the linear equation to find the coordinates) of intersection, if they exist.

$$
\begin{array}{rr}
\downarrow & \downarrow \\
2(0)+y=-3 & 2(-2)+y=-3 \\
y=-3 & -4+y=-3 \\
\therefore(0,-3) & y=1
\end{array}
$$

Graphically

Ex. 2 Find the coordinates of the point of intersection between the parabola $y-4=-(x+1)^{2}$ and the line $y=3 x+13$.
(1) $y-4=-(x+1)^{2}$
(2) $y=3 x+13$

Sub (2) into (1)

$$
\begin{aligned}
& 3 x+13-4=-(x+1)^{2} \\
& 3 x+9=-\left(x^{2}+2 x+1\right) \\
& 0=-x^{2}-5 x-10 \\
& x^{2}+5 x+10=0 \quad \text { M } 10 \\
& a=1 \quad b=5 \quad c=10 \quad \text { A } 5 \\
& \text { Use Quad. Form. N? }
\end{aligned}
$$

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-5 \pm \sqrt{5^{2}-4(1)(10)}}{2(1)} \\
& =\frac{-5 \pm \sqrt{25-40}}{2} \quad \therefore \text { Negative! }
\end{aligned}
$$

Ex. 3 If a line with a slope of 4 has one point of intersection with the quadratic function $y=\frac{1}{2} x^{2}+2 x-8$, what is the y-intercept of the line? Write the equation of the line in slope y-intercept form.
(1) $y=4 x+b$
(2)

$$
\begin{aligned}
& y=\frac{1}{2} x^{2}+2 x-8 \\
& \text { sub (1) into 2 } \\
& 4 x+b=\frac{1}{2} x^{2}+2 x-8 \\
& 0=\frac{1}{2} x^{2}-2 x-8-b
\end{aligned}
$$

$$
D=b^{2}-4 a c
$$

$0=(-2)^{2}-4\left(\frac{1}{2}\right)(-8-b)$

$$
a=\frac{1}{2} \quad b=-2 \quad c=-8-b
$$

$0=4-2(-8-b)$
$0=4+16+2 b$
$0=20+2 b$
$-20=2 b$
$\therefore y$-int is -10

Ex. 3 Find the length of chord $A B$ rounded to two decimal places.

$$
\begin{aligned}
& \text { (2) } \\
& 1.25 x^{2}-15 x+25=0 \\
& \text { Solve Via Quad. Furn. or factoring } \\
& a=1.25 \\
& b=-15 \\
& c=25 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \frac{5}{4} x^{2}-15 x+25=0 \\
& 5 x^{2}-60 x+100=0 \quad\left(x^{4}\right) \\
& =\frac{15 \pm \sqrt{(-15)^{2}-4(1.25)(25)}}{2(1.25)} \\
& =\frac{15 \pm \sqrt{100}}{2.5} \\
& =\frac{15 \pm 10}{2.5} \\
& \begin{aligned}
=\frac{15+10}{2.5} & =\frac{15-10}{2.5} \\
=10 & =2
\end{aligned} \\
& \begin{array}{l}
x=2 \text { of } x=10 \text { are } x \text {-values } \\
\text { of our intersections! }
\end{array} \\
& \text { (2) } y=0.5 x \\
& \text { for } x=2 \\
& y=0.5(2) \\
& \text { for } x=10 \\
& =1 \\
& \begin{aligned}
y & =0.5(10) \\
& =5
\end{aligned} \\
& (2,1) \\
& (10,5) \\
& \text { Now we need distance between }(2,1) d(10,5) \\
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(10-2)^{2}+(5-1)^{2}} \\
& =\sqrt{64+16} \\
& =\sqrt{80} \\
& =8.94 \\
& \text { The chord length is approx } 8.94 \text { units }
\end{aligned}
$$

$$
\begin{gathered}
\text { Homework } \\
\text { p. } 67 \mathrm{C2}, 1 \mathrm{ccc}, 3 \mathrm{cc}, 5 \mathrm{cb}, \\
1,10,15,19
\end{gathered}
$$

