Lesson 1.7B: Quadratic Applications
Ex. 1 For what values) of k does $f(x)=x^{2}+k x+9$ have 2 distinct real solutions?
$D>0$ means 2 sol

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =k^{2}-4(1)(9) \\
& =k^{2}-36
\end{aligned}
$$

$$
\begin{aligned}
K^{2}-36 & >0 \\
K^{2} & >36 \quad \pm 6
\end{aligned}
$$

$$
k>6 \text { or } k<-6
$$

Ex. 2 A factory is built on a lot that measures 80 m by 60 m . A lawn of uniform width, equal to the area of the factory, surrounds it. How wide is the strip of lawn, and what are the dimensions of the factory?

Total Area $=80 \times 60$

$$
=4800
$$

\therefore Area of each is 2400
Let x rep. the width of the lawn
A factory

$$
\begin{aligned}
& 2400=(80-2 x)(60-2 x) \\
& 2400=4800-160 x-120 x+4 x^{2} \\
& 0=4 x^{2}-280 x+2400 \\
& =4\left(x^{2}-70 x+600\right) \text { Factor } \\
& =4(x-60)(x-10) \\
& \text { Inadmissible }
\end{aligned}
$$

because side
length would be

$$
-60
$$

\therefore Sides are

$$
\begin{aligned}
& 80-2 x \\
& =80-2(10) \\
& =60
\end{aligned}
$$

60-2x $=60-2(10)$
$=40$
. Width of lawn is 10 m

Ex. 3 The difference between the length of the hypotenuse and the length of the next longest side of a right triangle is 3 cm . The difference between the lengths of the two perpendicular sides is 3 cm . Find the three side lengths.

$$
\begin{aligned}
& \text { Let } x \text { rep. the length of hyp. } \\
& (x)^{2}=(x-3)^{2}+(x-6)^{2} \\
& x^{2}=x^{2}-6 x+9+x^{2}-12 x+36
\end{aligned}
$$

$$
\varnothing=x^{2}-18 x+45
$$

$$
\begin{aligned}
& =(x-3)(x-15) \\
& x=3 \quad \downarrow \\
& x=15
\end{aligned}
$$

$$
\begin{aligned}
& \text { I WADMISSABLE } \\
& \text { Would result in } \\
& \text { negative side lengths }
\end{aligned}
$$

\therefore Side lengths arc: $15,12,9 \mathrm{~m}$

Homework
 pg. 13 H8
 pg. 50 H8, 15, 16, 17 Handovt 1.3B \#1c, 11c

Extror Practice?
 pg. 58 \#7
 Handovt 1.3B 3,9, 12

