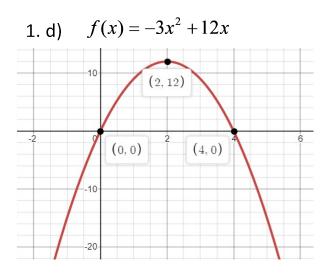
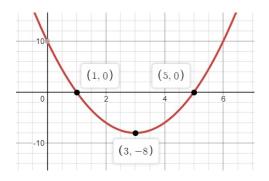
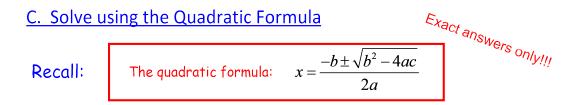
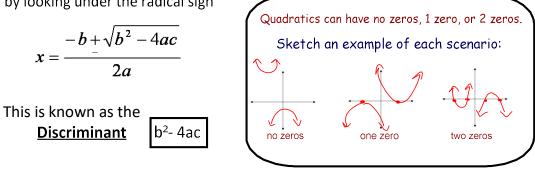

1.6 Solve Quadratic Equations


Recall: Solving a quadratic equation means finding the value of the roots, zeros or x-intercepts. You are finding where the function, f(x) is zero.





2. a) $f(x) = 2(x-3)^2 - 8$

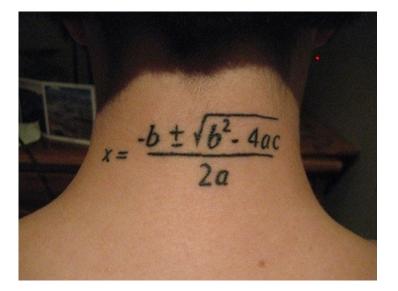

1.6 Solving Quadratic EquationsNEWEST.notebook

Ex. 1 Solve. Give exact answers only.

a)
$$3x^{2} + 4x - 2 = 0$$

 $x = \frac{-5 \pm \sqrt{5^{2} - 4ac}}{2a}$
 $= \frac{-4 \pm \sqrt{4^{2} - 4(3)(-2)}}{2(3)}$
 $= -4 \pm \sqrt{4^{2} - 4(3)(-2)}$
 $= \frac{-4 \pm \sqrt{4^{2} - 4(3)(-2)}}{2(3)}$
 $= \frac{-4 \pm \sqrt{4^{2} - 4(3)(-2)}}{2(5)}$
 $= \frac{3 \pm \sqrt{7 - 40}}{10}$
 $= \frac{3 \pm \sqrt{7 - 40}}{10}$
 $= \frac{3 \pm \sqrt{-31}}{10}$
 $\therefore \text{ No Solutions!}$
 $= \frac{-2 \pm \sqrt{10}}{3}$

We can determine the <u>number</u> of roots by looking under the radical sign



- \Rightarrow If b²- 4ac > 0 then there is two real roots
- If $b^2 4ac = 0$ then there is one real root
- If $b^2 4ac < 0$ then there is no real roots

Ex. 2 For each quadratic equation, determine the <u>number</u> of roots.

a)
$$2x^2 - x + 5 = 0$$

 $D = b^2 - 4ac$
 $= (-1)^2 - 4(2)(5)$
 $= 1 - 46$
 $= -39$
 $\therefore No roods$
c) $(x - 6)^2 = 0$
 $V(-6, 0)$
 $a + te x - exis!$
 $\therefore One root$
 $(-6, -6)$
 $(x - 6)^2 = 0$
 $(-6, -6)$
 $(x - 6)^2 = 0$
 $(-6, -6)$
 $(x - 6)^2 = 0$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(x - 6)^2 = 0$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $(-6, -6)$
 $($

Homework p. 49 # Clcdf, 3bdf, 5c, 6abc, 7, 12, 13a

